

COMPENSATOREN

HANDBUCH DER KOMPENSATOREN

Witzenmann GmbH

Östliche Karl-Friedrich-Str. 134 75175 Pforzheim Telefon+49 7231 581-0 Telefax+49 7231 581-820 wi@witzenmann.com www.witzenmann.de

Aktualisierte Ausgabe des Handbuchs der Kompensatorentechnik nach der neuen Werknorm und der Druckgeräterichtlinie.

Stand: 10/2023

Technische Änderungen vorbehalten.

Technische Daten finden Sie ebenfalls als PDF-Download unter www.flexperte.de

INHALT

Kapitel	1	Witzenmann – Spezialist für flexible, metallische Elemente	6
Kapitel	2	Qualitätsmanagement	8
Kapitel	3	Der Kompensator	18
Kapitel	4	Kompensationsarten	34
Kapitel	5	Auswahl der Kompensatoren	48
Kapitel	6	Standardprogramme	78
	Typ ABN, AFN	Axial-Kompensatoren für Niederdruck (Abgas) mit Flanschen	84
	Typ ABN, AFN	Axial-Kompensatoren mit Flanschen	102
	Typ UBN, UFN	Universal-Kompensatoren für Niederdruck (Abgas) mitFlanschen	154
	Typ UBN, UFN	Universal-Kompensatoren mit Flanschen	160
	Typ ARN	Axial-Kompensatoren für Niederdruck (Abgas) mit Schweißenden	166
	Typ ARN	Axial-Kompensatoren mit Schweißenden	176
	Typ URN	Universal-Kompensatoren für Niederdruck (Abgas) mit Schweißenden	206
	Typ URN	Universal-Kompensatoren mit Schweißenden	210
		·	
	Typ WBN, WBK	Angular-Kompensatoren mit drehbaren Flanschen	214
	Typ WFN, WFK	Angular-Kompensatoren mit glatten Festflanschen	228
	Typ WRN, WRK	Angular-Kompensatoren mit Schweißenden	242
	Typ LBR, LFR	Lateral-Kompensatoren mit Flanschen	278
	Typ LRR, LRK, LRN	Lateral-Kompensatoren mit Schweißenden	324
	Typ LBS	Lateral-Kompensatoren schallisolierend mit drehbaren Flanschen	376

Kapitel 7 Sond		Sonderprogramme	386
	Typ AON	Einwandige Kompensatoren für den Apparatebau	396
	Тур Логе	Elimanalye tempensatoren tai aen Apparatessa	000
	Тур АВТ	Axial-Kompensatoren mit PTFE-Auskleidung	406
	Typ ARH	Axial-Kompensatoren mit Entriegelungsautomatik	416
	Typ DRD	Axial-Kompensatoren mit Druckentlastung	430
	Typ XOZ, XZF, XRZ, XSZ	Rechteck-Kompensatoren	434
Kapitel	8	Sonderausführungen	442
Kapitel	9	Einbau der Kompensatoren	460
Kapitel	10	Vielwandigkeit als Prinzip	484
Kapitel	11	Auslegung der Bälge	492
Kapitel	12	Axiale Druckkraft und entlastete Konstruktionen	498
Kapitel	13	Schwingungen und Schall	508
Kapitel	14	Herstellung und Prüfung	524
Kapitel	15	Kennzeichnung, Korrosionsschutz, Verpackung	530
Kapitel	16	Montagehinweise	534
Kapitel	17	Werkstoffe	538
	18		564
Kapitel	10	Korrosionsbeständigkeit	504
Kapitel	19	Rohre, Flansche, Rohrbogen	602
Kapitel	20	Unrechnungstabellen und Formelzeichen	620

4 WITZENMANN 1501de/19/10/23/pdf (HYDRA) 1501de/19/10/23/pdf WITZENMANN 5

LÖSUNGSKOMPETENZ

Immer wenn Rohre durch häufige Temperaturwechsel oder Druckänderungen gedehnt werden, wenn in Leitungssystemen Schwingungen auftreten, wenn große Lasten zu meistern, Medien druckdicht zu fördern oder ein hohes Vakuum zu halten ist, kommen bewegliche metallische Elemente zum Einsatz. Dazu gehören neben den Kompensatoren und Metallbälgen auch Metallschläuche, Fahrzeugteile und Rohrhalterungen. Witzenmann als Erfinder des Metallschlauches und Begründer der Metallschlauch- und Kompensatorenindustrie ist hier die erste Adresse. Basiserfindung war der 1885 entwickelte und patentierte Metallschlauch, 1920 folgte das Patent auf den Metallkompensator.

Weltweit präsent

Als internationale Firmengruppe mit insgesamt über 4.300 Mitarbeitern in 24 Unternehmen steht Witzenmann heute für Innovation und hohe Qualität. Mit dem breitesten Produktprogramm der Branche bietet Witzenmann Problemlösungen für Schwingungsentkopplung, Dehnungsaufnahme in Rohrleitungen, flexible Montage und Leiten von Medien. Als Entwicklungspartner der Kunden in der Industrie, der Technischen Gebäudeausrüstung, der Automobilindustrie und zahlreichen weiteren Märkten verfügt Witzenmann über einen eigenen Maschinen-, Werkzeug- und Musterbau sowie umfassende Test- und Prüfeinrichtungen. Ein wesentlicher Faktor in der Zusammenarbeit mit den Kunden ist die technische Beratung durch das Kompetenzzentrum im Pforzheimer Stammhaus in Deutschland. Hier arbeiten Teams hochqualifizierter Ingenieure in enger Zusammenarbeit mit dem Kunden an Produktentwicklungen und neuen Anwendungen. Von der ersten Vorplanung bis zur Serienproduktion.

Bessere Produkte

Auf der Basis dieses gebündelten Wissens entstehen Synergieeffekte, die in jeder Produktlösung erfahrbar werden. Die Vielfalt der Einsatzfelder ist nahezu grenzenlos. Allen gemeinsam ist jedoch eines: Maximale Sicherheit, auch unter extremen Einsatzbedingungen. Dies gilt für alle Witzenmann-Lösungen.

QUALITÄTS-MANAGEMENT

Bevor ein neu entwickeltes flexibles Element in Serie geht, durchläuft es härteste Testprogramme in unserem hochmodernen Entwicklungszentrum: Elektrodynamische Schwingungsprüfstände, Heißgas- und Lebensdauerprüfanlagen, Korrosionsprüfeinrichtungen und mobile Prüfeinrichtungen.

Mit diesen Tests stellt Witzenmann nicht nur sicher, dass die Produkte über die optimale Konfiguration verfügen, sondern auch, dass sie allen denkbaren Belastungen über einen langen Zeitrum standhalten. Dass Witzenmann diese Ansprüche schon seit langem konsequent verfolgt, belegt die Zertifizierung nach DIN ISO 9001 im Jahre 1994 – als eines der ersten Unternehmen der Branche. Auch hier findet eine kontinuierliche Weiterentwicklung statt, aktuell verfügt Witzenmann über eine Zulassung nach der wesentlich strengeren Norm IATF 16949. Diese Zertifizierungen sind Grundlagen für die führende Position im Markt.

ALLGEMEINE ZULASSUNGSPRÜFUNGEN

Qualitätsmanagementsystem nach DIN ISO 9001 Technischer Überwachungs-Verein Südwest e.V. Überprüfung und Bestätigung als Hersteller nach AD-Merkblatt HP0, W0 und nach TRD 100

SPEZIFISCHE ZULASSUNGEN (Auswahl)

DVGW - Deutscher Verein des Gas- und Wasserfaches e.v., Deutschland

ÖVGW - Österreichische Vereinigung für das Gasund Wasserfach, Österreich

ABS - American Bureau of Shipping, USA

BV - Bureau Veritas. Frankreich

DNV GL, Norwegen/ Deutschland

LRS - Lloyd's Register of Shipping, Großbritannien

RINA - Registro Italiano Navale, Italien

BAM - Bundesanstalt für Materialforschung und -prüfung

VDF - Prüf- und Zertifizierungsinstitut

VdS - Verband der Sachversicherer e V

FM Global, USA

ASME - The American Society of Mechanical Engineers, USA

NBBI - The National Board of Boiler and Pressure Vessel Inspectors, USA

QUALITÄTSVERANTWORTUNG STRAFF ORGANISIERT

Unsere Qualitätssicherung ist in zwei Ebenen organisiert. Das zentrale Qualitätsmanagement ist mit den übergeordneten organisatorischen und technischen Maßnahmen zur Qualitätssicherung beauftragt. Die Qualitätsstellen unserer Geschäftsbereiche übernehmen Qualitätsplanung, Qualitätslenkung und Qualitätsprüfung im Rahmen der Auftragsabwicklung. Die Qualitätssicherung ist organisatorisch von der Fertigung unabhängig. Sie ist gegenüber allen Mitarbeitern weisungsbefugt, die qualitätsbeeinflussende Tätigkeiten ausüben.

Berechnung und Konstruktion

In unseren Zentralabteilungen werden die Grundlagen zur Berechnung und Konstruktion unserer Produkte erstellt. Umfangreiche theoretische Untersuchungen sind die Basis unserer Arbeit. In den einzelnen Geschäftsbereichen werden schließlich die produktspezifischen Konstruktionsanforderungen umgesetzt.

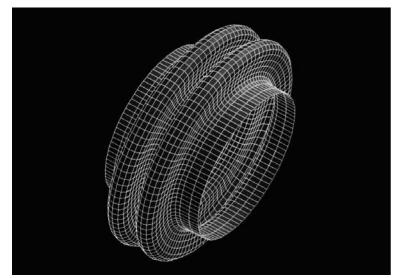


Bild 2.1 FEM Struktur eines Metallbalges

Genaue Kontrolle der Lieferanten

Wir arbeiten nur mit Lieferanten zusammen, die eine wirksame Qualitätssicherung nachweisen können. Für die Halbzeugformen Bänder, Bleche, Rohre, Drähte fordern wir Prüfbescheinigungen, die sich nach dem Verwendungszweck der Teile richten. Durch Eingangskontrollen in Wareneingang und Werkstofflabor wird sichergestellt, dass die Zulieferungen unseren Bestell- und Abnahmevorschriften entsprechen.

Lückenlose Fertigungsüberwachung

Die Verantwortung für Kontrolle und Wartung der Fertigungseinrichtungen und eine ordnungsgemäß durchgeführte Fertigung nach den vorgegebenen Herstellunterlagen nimmt die betriebliche Aufsicht im Fertigungsprozess wahr.

Komplette Überwachung der Schweißverfahren

Schriftliche Anweisungen regeln die Durchführung der Schweißarbeiten. Die Qualifikation der Schweißer wird durch Prüfungen nach EN ISO 9606-1 / EN ISO 9606-4 sichergestellt. Die wichtigsten, häufig angewandten Schweißverfahren sind durch Verfahrensprüfungen belegt. Die Schweißaufsicht entspricht den jeweiligen Anforderungen gemäß AD-Merkblatt HP 3.

Überwachung der Mess- und Prüfeinrichtungen

Alle Mess- und Prüfeinrichtungen werden dokumentiert. Sie werden bezüglich ihrer Genauigkeit und Zuverlässigkeit in regelmäßigen Intervallen geprüft. Der Zeitpunkt der Kalibrierung wird durch Überwachungskennzeichen festgehalten.

QUALITÄT AUF DEM PRÜFSTAND

Produktprüfung

Umfangreiche, systematische Prüfungen in den letzten Jahren ermöglichen uns den Übergang vom empirischen Routinewissen zur Bildung von Systemwissen zu vollziehen. Dieses Systemwissen ist einerseits Voraussetzung für Produktentwicklung und Produktoptimierung und andererseits erforderlich, um dem zunehmenden Verlangen des Marktes nach Totalinformation über sämtliche Produkteigenschaften entgegenkommen zu können. Wie z. B. bei den sicherheitstechnisch relevanten Anwendungen in der Luft- und Raumfahrt und der Fahrzeugtechnik.

Werkstoffprüfung

Die Forderung nach wirtschaftlicher Fertigung bedingt eine zweckmäßige Werkstoffauswahl. Dies setzt, ebenso wie die Forderung nach Steigerung von Qualität und Sicherheit, die genaue Kenntnis der Werkstoffeigenschaften voraus.

Die Halbzeuge für unsere Produkte sind hochwertige, meist dünne Bänder, Drähte, Bleche oder dünnwandige Rohre. Die an unsere Halbzeuge gestellten hohen Qualitätsanforderungen sind in unseren Bestell- und Abnahmevorschriften dokumentiert. Die Qualitätsanforderungen umfassen neben den Anforderungen der nationalen und internationalen Normen und Vorschriften auch interne fertigungs- und dokumentationsspezifische Anforderungen. Durch Materialeingangskontrollen wird die Einhaltung der in Bestellvorschriften geforderten geometrischen, mechanisch-technologischen und chemischen Eigenschaften überprüft.

Zu den Aufgaben der Werkstoffprüfung gehört weiterhin die Ausführung von mechanischen, technologischen und metallografischen Prüfungen sowie schweißtechnische Verfahrens- und Abnahmeprüfungen.

Zur zerstörungsfreien Prüfung der Bauteile und Schweißnähte werden Durchstrahlprüfungen mit Röntgenstrahlen sowie Sicht- und Eindringprüfungen durchgeführt. Zudem erfolgt eine Dichtheitsprüfung geschweißter Kompensatoren.

Unser Werkstofflabor besitzt die Anerkennung als fertigungsunabhängige Prüfaufsicht für zerstörende und zerstörungsfreie Werkstoffprüfungen mit der Genehmigung zum Ausstellen von Abnahmezeugnissen.

Bild 2.2 Lastspielprüfeinrichtung für Schlauchleitungen großer Nennweiten im U-Bogen-Einbau unter Innendruck und Medientemperatur bis 300°C.

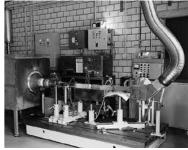


Bild 2.3 Lastspielprüfeinrichtung für flexible Teile in Abgasanlagen mit Abgastemperatur bis 1100°C.

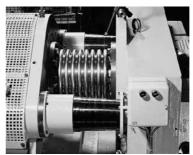


Bild 2.4 Lastspielprüfeinrichtung mit einem Kompensator DN 200.

Bild 2.5 Schwingungsprüfungs-Stand zur Simulation komplexer Anwendungsbedingungen.

Schadensanalyse

Eine weitere Aufgabe der Werkstoffprüfung ist die Schadensanalyse der bei der Prüfung oder im Betrieb ausgefallenen Produkte. In der Regel werden metallografische Untersuchungen durchgeführt und das Schadensbild durch fotografische Aufnahmen dokumentiert.

Qualität der Kompensatoren

Im Interesse unserer Kunden stellen wir an unsere Kompensatoren hohe Anforderungen in Bezug auf Leistung, Qualität und Zuverlässigkeit.

Dazu wird im Rahmen der Qualitätssicherung das zur Herstellung verwendete Eingangsmaterial kontrolliert, die Fertigung kontinuierlich überwacht und das fertige Produkt sinnvollen Endprüfungen unterzogen, bevor es unser Werk verlässt.

Parallel dazu werden mit Kompensatoren aus der laufenden Fertigung zerstörende Produkt- und Funktionsprüfungen durchgeführt.

Die Verwendung hochwertigen Materials, optimierte materialschonende Herstellverfahren, moderne maschinelle Einrichtungen und Geräte und nicht zuletzt verantwortungsbewusstes, qualifiziertes Personal sind jedoch die wichtigsten Garanten für die Qualität unserer Produkte.

Bild 2.6 Wechselbiegemaschine zur Ermittlung des Ermüdungsverhaltens von dünnen Bändern und Blechen.

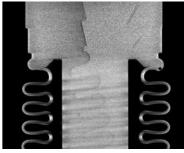


Bild 2.7 Durchstrahlungs-Prüfung als zerstörungsfreie Prüfung.

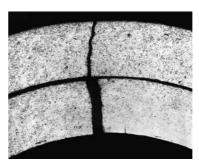


Bild 2.8 Ermüdungsbruch an einer dünnen Balglage im Schliffbild

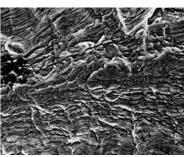


Bild 2.9 Ermüdungsbruch unter dem Raster - Elektronen - Mikroskop

Im Rahmen der Qualitätssicherung haben wir die Mindestanforderungen an das Material in Bestell- und Abnahmevorschriften für die wichtigsten Typen festgelegt.

Prüfbescheinigungen für das verwendete Material können kostenpflichtig angefordert werden; Bandmaterial, das normalerweise auf Lager vorrätig ist, kann mit Prüfbescheinigung 3.1 oder auch 3.2 nach DIN EN 10204 bestätigt werden. Mögliche Bescheinigungen der durchgeführten Prüfungen sind in DIN EN 10204 aufgeführt (siehe Tabelle).

Wir möchten an dieser Stelle darauf hinweisen, dass der Umfang der angeforderten Materialprüfungen einen wichtigen Einfluss sowohl auf die Kosten des Produktes und der Prüfungen, als auch auf die Lieferzeit haben kann. Unverhältnismäßig strenge Anforderungen sollten daher vermieden werden.

		*			
Bezeichnung	Prüfbescheinigung	Тур	Inhalt der Beschei- nigung	Bedingungen	Bestätigung der Bescheinigung
2.1	Werksbeschei- nigung	nicht spezifisch	Bestätigung der Übereinstimmung mit der Bestellung.	Gemäß Lieferbe- dingungen in der Bestellung oder – falls gewünscht – gem. den amtlichen Vorschriften und mitgeltenden tech- nischen Regeln.	Durch den Hersteller.
2.2	Werkszeugnis		Bestätigung der Übereinstimmung mit der Bestellung unter Angabe von Ergebnissen nichtspezifischer Prüfung.	nischen negeni.	
3.1	Abnahmeprüfzeugnis 3.1	spezifisch	Bestätigung der Übereinstimmung mit der Bestellung unter Angabe von Ergebnissen spezi- fischer Prüfung.		Durch den von der Fertigungsabtei- lung unabhängigen Abnahmebe- auftragten des Herstellers.
3.2	Abnahmeprüfzeug- nis 3.2			Gemäß den amtli- chen Vorschriften und mitgeltenden technischen Regeln.	Durch den von der Fertigungsabtei- lung unabhängigen Abnahmebe- auftragten des Herstellers und den vom Besteller bevollmächtigten Abnahmebeauf- tragten oder den in den amtlichen Vorschriften genannten Abnah- mebeauftragten.

16 *WITZENMANN* 1501de/19/10/23/pdf (HYDRA) 1501de/19/10/23/pdf *WITZENMANN* **17**

Kompensatoren in ihren verschiedenen Bauformen (Beispiele siehe Bild 3.1 und 3.2) dienen dem Bewegungsausgleich in Rohrleitungen, an Maschinen und Apparaten. Die Bewegungen, immer Relativbewegungen zwischen zwei Anlagenteilen, werden durch Wärmedehnungen, Druckverformungen, Massenkräfte, Montageversatz oder Fundamentsenkungen hervorgerufen.

Bild 3.1 Axial-Kompensator

Bild 3.2 Universal-Kompensator

ANSCHLÜSSE

Angeschlossen werden die Kompensatoren durch Verschweißen mit den Rohren oder Behälterwänden oder durch Anflanschen, z. B. an Maschinenstutzen. Dafür erhalten sie Schweißenden oder Flansche als übliche Anschlussteile, in Sonderfällen auch Verschraubungen (siehe Bilder 3.3 – 3.5).

Bild 3.4 Bördelflansch

Bild 3.5 Gewindenippel

DER BALG UND SEINE FUNKTION

Bewegliches Grundelement des Kompensators ist der Metallbalg, der aufgrund seiner ringförmig umlaufenden Wellen eine allseitige Beweglichkeit aufweist, die im Kompensator der Bauart entsprechend genutzt wird (Bild 3.6). Seine Beweglichkeit bezieht er aus der Biegsamkeit der radial stehenden Wellenflanken (Bild 3.7)

Bild 3.6 Bewegungen des Balges

Bild 3.7 Funktionsweise einer Balgwelle

Neben der Beweglichkeit muss der Metallbalg eine bestimmte Druckfestigkeit aufweisen. Beweglichkeit und Druckfestigkeit sind gegenläufige Forderungen, die jede für sich im Extremfall zu unterschiedlichen Wellenformen führt. Die lyraförmige Welle stellt einen guten Kompromiss dar, der große Beweglichkeit mit ausreichender Druckfestigkeit vereint (Bilder 3.8 – 3.10)

Bild 3.8 Torusform, sehr druckfest

Bild 3.9 Membrane, sehr beweglich

Bild 3.10 Lyra-Form, druckfest und beweglich

Die Lyra-Welle – nur sie soll im Folgenden noch betrachtet werden – lässt sich durch Änderung ihrer Geometrie den jeweiligen Anforderungen anpassen. Darüber hinaus kann die Lagenzahl erhöht werden, was schließlich auf den vielwandigen Balg als technisch günstige Lösung führt (siehe dazu Kapitel 10 "Vielwandigkeit als Prinzip"). Einen optischen Vergleich möglicher Balgausführungen zeigen die Bilder 3.11 – 3.13.

Obwohl der vielwandige Balg in Bezug auf Auslegung und Herstellung besondere Anforderungen stellt, wird er wegen seiner günstigen Eigenschaften als elastisches Grundelement in unseren Kompensatoren eingesetzt. Dort hat er sich seit Jahren besonders für druckbeanspruchte Konstruktionen bestens bewährt.

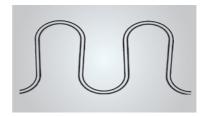


Bild 3.11 einwandiger Balg

Bild 3.12 mehrwandiger Balg

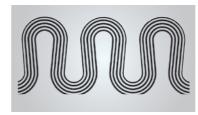


Bild 3.13 vielwandiger Balg

VERANKERUNGEN

Gelenk-Kompensatoren in den veschiedenen Ausführungen erhalten der jeweiligen Funktion entsprechende Verankerungen, die die axiale Druckkraft aufnehmen und gleichzeitig eine angulare oder laterale Beweglichkeit ermöglichen müssen. Die wichtigsten Verankerungen sind in den Bildern 3.14 – 3.17 dargestellt. Die Ausbildung der Verankerungen unterscheidet sich im Detail; sie kann den Abbildungen zu den einzelnen Typenreihen entnommen werden.

Bild 3.14 Angular - Kompensator "WRN"

Bild 3.15 Kardan - Kompensator "WRK"

Bild 3.16 Lateral - Kompensator mit Rundankern und Kugelgelenken "LRR"

Bild 3.17 Lateral - Kompensator mit Kreuzgelenken "LRK"

MONTAGETEILE

Weitere Montageteile sind von Fall zu Fall von Bedeutung; die am häufigsten vorkommenden sind nachstehend aufgeführt:

■ Leitrohr

Innen liegendes Rohr, meist aus Edelstahl. Schützt den Balg vor dem direkten Kontakt mit dem strömenden Medium und verringert den Durchflusswiderstand

■ Führungsrohr

Rohr auf der Innen- oder Außenseite des Balges. Schützt den Balg an definierten Stellen oder auf der ganzen Länge gegen seitliches Ausweichen (Knicken).

■ Schutzrohr

Rohr auf der Außenseite des Kompensators. Schützt den Balg vor mechanischer Beschädigung und Verschmutzung der Wellentäler, dient außerdem als Träger für Wärmedämmung.

■ Verstärkungsringe

Ringe in den Wellentälern der Bälge zur Erhöhung der Druckfestigkeit.

TECHNISCHE MERKMALE

HYDRA Kompensatoren entsprechen den neuesten technologischen und fertigungstechnischen Erkenntnissen und sind ausgereifte flexible metallische Elemente für universellen Einsatz im modernen Rohrleitungs- und Anlagenbau. Ihre hervorragenden Eigenschaften beruhen auf einer optimalen Kombination konstruktiver Details als Ergebnis intensiver Entwicklungsarbeit und jahrzehntelanger Erfahrung im praktischen Einsatz.

Der vielwandige Balg

Der vorstehend genannte vielwandige Balg verleiht HYDRA Kompensatoren aller Ausführungen eine Reihe technischer und wirtschaftlicher Vorzüge, die im Einzelnen in Kapitel 10 "Vielwandigkeit als Prinzip" beschrieben sind; hier nur eine kurze Aufzählung:

- Beherrschung hoher und höchster Drücke
- Große Bewegungsaufnahme
- Kleine Baumaße
- Geringe Verstellkräfte
- Optimale Kompensation auf kleinstem Raum
- Frühzeitige Leckanzeige (im Schadensfall) über standardmäßige Kontrollbohrung
- Völlige Berstsicherheit
- Möglichkeit zur permanenten Lecküberwachung bei kritischen Medien
- Wirtschaftlicher Einsatz hochwertiger, korrosionsbeständiger Materialien wie Nickelbasislegierungen, Eisen-Nickel-Chrom-Legierungen, Titan und Tantal
- Isolierend gegen Körperschall bis zu 20 dB

Bild 3.18 Vielwandiger Balg (Schnitt)

Die Schweißverbindung

Die Verbindungsnaht zwischen dem vielwandigen Balg aus austenitischem Edelstahl und einem ferritischen Schweißende (oder Flansch) erfordert bereits spezielle schweißtechnische Maßnahmen. Das Verschweißen von Sonderlegierungen stellt dagegen noch höhere Anforderungen an die konstruktive Ausbildung des Schweißbereiches sowie den Schweißprozess. Die Naht ist zwar mechanisch nur mit einem Teil der axialen Druckkraft belastet, nämlich der, die durch Überdruck im Ringraum der Wellen und durch die geringen Verstellkräfte des Balges auf Zug und Scherung wirkt; sie soll aber auch über die gesamte Betriebszeit absolut dicht halten und ist demnach mitentscheidend für die Qualität des Kompensators.

Durch besondere Maßnahmen wird daher für ein niedriges Spannungsniveau gesorgt. Das Biegemoment, das durch die Balgbewegung in den Wellenflanken entsteht, wird reduziert bevor es die Schweißnaht erreicht:

- Entlastendes Gegenmoment erzeugt durch hochgezogene Balgbord
- Aufgepresste Ringe verstärken den Bord und verringern somit das Spannungsniveau
- Abklingen von eventuell eingeleiteter verbleibender Biegespannungen durch zylindrischen Bord

Die in Bild 3.19 dargestellte Standardnaht ist nachweislich zerstörungsfrei prüfbar. Wegen des geringen Spannungsniveaus können aber solche kostspieligen Prüfungen, die bei anderen Nahtausführungen zur Qualitätssicherung erforderlich sind, entfallen. Es genügt die standardmäßige Dichtheitsprüfung.

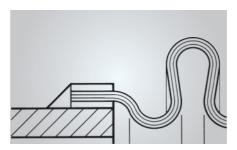


Bild 3.19 Verbindungsnaht Balg / Schweißende

24 *WITZENMANN* 1501de/19/10/23/pdf (HYDRA) (HYDRA) 1501de/19/10/23/pdf *WITZENMANN*

Der Bördelflansch

Bördelflansche, d.h. drehbare Flansche, bieten – wie auch die Festflansche – die bekannten Vorteile der Flanschanschlüsse wie schnelle Montage und Auswechselbarkeit der Armatur.

Da Bördelflansche darüber hinaus nicht mit dem Balg verschweißt, sondern formschlüssig und drehbar an den Balg montiert sind (Bild 3.20), ergeben sich weitere günstige Eigenschaften:

- Die Drehbarkeit vereinfacht die Montage bei nicht fluchtenden Lochbildern.
- Flansche kommen mit den möglicherweise aggressiven Medien nicht in Kontakt und können aus normalem Stahl oder aus Sonderwerkstoffen wie Aluminium und Kunststoff hergestellt werden.
- Flansche können durch entsprechende Beschichtung oder Verzinkung kostengünstig gegen Korrosion geschützt werden.
- Für einzelne Balglagen können Sonderwerkstoffe eingesetzt werden, die weder mit dem sonstigen Balgmaterial noch mit dem Flansch verschweißbar sind.

Kompensatoren kleinerer Nennweiten können aus fertigungstechnischen Gründen Losflansche mit Bördelring erhalten, die weitgehend die gleichen Vorteile bieten. Die in Bild 3.20 dargestellte Abstandssicke hält auf einfache Weise den Platz für die Schraubmontage frei und vermeidet die Gefahr, bei der Montage Wellen zu beschädigen. Außerdem gewährleistet die Konstruktion die ungehinderte Beweglichkeit der Randwellen.

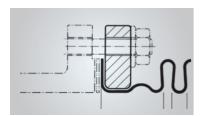


Bild 3.20 Formschlüssige Verbindung Balg / Bördelflansch

Das Leitrohr

Leitrohre werden eingesetzt, wenn Kompensatoren geschützt werden müssen gegen:

- Abrasion durch feste Partikel im strömenden Medium
- Ablagerungen fester Bestandteile in den Wellen
- Schwingungserregung durch hohe Strömungsgeschwindigkeiten

Leitrohre verringern theoretisch auch die Druckverluste der Strömung durch den Kompensator. Praktisch sind diese Druckverluste aber so gering – etwa doppelt so groß wie die eines gleich langen Rohres – dass dafür der Aufwand nur selten Johnt.

Kompensatoren mit Bördelflanschen erhalten bei uns formschlüssig eingepresste Leitrohre (Bild 3.21), die auch unter schwingender Belastung nicht abreißen können.

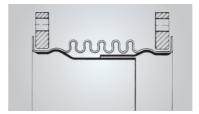


Bild 3.21 Formschlüssig montierte Leitrohre

Die patentierte Verankerung

In Platten eingesetzte Hammerkopf-Anker (Bild 3.22) ergeben in Verbindung mit vielwandigen Bälgen extrem kurze Baulängen der HYDRA Gelenk-Kompensatoren. Dieser Vorteil kommt besonders bei Gelenksystemen mit Angular-Kompensatoren voll zur Wirkung, weil daraus auch kleine Gesamtabmessungen des Gelenksystems und evtl. erforderlicher Bauwerke resultieren.

Die formschlüssig mit den Platten verbundenen Hammerkopf-Anker bewirken – wie die das Rohr weitgehend umschließende Platte selbst – einen günstigen Kraftfluss und eine gute Spannungsverteilung. Dadurch können sich eventuelle, unbeabsichtigte Überlastungen der Verankerung, z.B. durch Druckstöße aus einem Wasserschlag, nicht so verheerend auswirken. Die Platte gibt nach und verformt sich. In Verbindung mit der großen Berstsicherheit der vielwandigen Bälge ist damit eine hohe Sicherheitsreserve gegeben.

Bild 3.22 Zuganker mit Hammerkopf

WERKSTOFFAUSWAHL

Die unterschiedlichsten Einsatzfälle, für die unsere Bälge Verwendung finden, machen eine angepasste Werkstoffwahl erforderlich.

Um die Auswahl der jeweils geeigneten Werkstoffe zu erleichtern, sind in den Tabellen in Kapitel 17 die bei uns gängigen Werkstoffe und häufiger verwendeten Sonderwerkstoffe mit allen erforderlichen Angaben aufgeführt.

Die wichtigsten Anforderungen an den Werkstoff sind:

- Korrosionsbeständigkeit
- Temperaturbeständigkeit
- Festigkeit
- Schweißeigenschaften
- Verformbarkeit

Werkstoffe für allgemeine Anwendungen

Standardwerkstoffe der Gruppe nicht rostender, austenitischer Stähle sind 1.4301, 1.4541, 1.4571 und 1.4404. Diese Werkstoffe erfüllen in besonderem Maße die Voraussetzungen über einen weiten Anforderungsbereich. Im Hinblick auf schnelle Verfügbarkeit und optimierte Lagerhaltung fertigt Witzenmann Bälge im Allgemeinen aus dem Werkstoff 1.4541.

Werkstoff 1.4541 - Standard für die Balg-Herstellung

Der Werkstoff 1.4541 wird in der Chemischen Industrie, in der Nahrungsmittelindustrie, in Abgasanlagen, in Fernwärme- und Kompressorenleitungen und der Kryotechnik eingesetzt. Da beim 1.4541 im Vergleich zum 1.4301 Titan zulegiert ist, besitzt dieser bis 400 °C eine bessere Beständigkeit gegen interkristalline Korrosion.

Werkstoff 1.4571

Wie der 1.4541 kommt der 1.4571 in der chemischen Industrie, Nahrungsmittelindustrie, in Abgasanlagen, in Fernwärme- und Kompressorenleitungen und in der Kryotechnik zum Einsatz. Insbesondere bei Abkoppelelementen für Abgasanlagen von Kraftfahrzeugen und beim Einsatz in Trinkwasserleitungen hat sich der 1.4571 bewährt. Der 1.4571 ist wie der 1.4541 titanstabilisiert, was seine Beständigkeit gegen interkristalline Korrosion erhöht. Zusätzlich ist beim 1.4571 Molybdän zulegiert, sodass er gegen Lochkorrosion beständiger als der 1.4541 ist, welche beim Vorhandensein von Chloriden auftreten kann.

Werkstoff 1.4301

Für Wickelschläuche, welche z. B. in Abgasanlagen von LKW Verwendung finden, weist der hochlegierte Stahl 1.4301 eine ausreichende Korrosionsbeständigkeit auf. Die Korrosionsbeständigkeit ist auf die Elemente Chrom und Nickel zurückzuführen.

Werkstoff 1.4404

Der 1.4404 findet Verwendung für Bauteile in der Vakuumtechnik. Auch als Schlauchwerkstoff hat er sich bewährt. Die chemische Zusammensetzung entspricht weitgehend dem 1.4571. Im Vergleich zum 1.4571 ist der 1.4404 nicht titanstabilisiert. Durch einen reduzierten Kohlenstoffgehalt kleiner 0,03 % weist er jedoch eine ähnliche Beständigkeit gegen interkristalline Korrosion auf. Die Festigkeitskennwerte sind aufgrund des reduzierten Kohlenstoffgehalts etwas geringer als die des 1.4571.

WERKSTOFFE FÜR KORROSIVE MEDIEN

Für besonders aggressive Bedingungen sind Sonderwerkstoffe erforderlich, die mindestens die Korrosionsbeständigkeit der anschließenden Rohrleitung oder Armatur haben sollten.

Im Zweifelsfall sollte ein höherwertiger Werkstoff ausgewählt werden. In vielen Fällen eignen sich dafür Nickelbasislegierungen, mit denen gute Erfahrungen vorliegen. Bevorzugt verwendet werden bei Kompensatorenbälgen der Werkstoff 2.4856 (Alloy 625), der Werkstoff 2.4610 (Alloy C-4) und bei Bälgen mit kleiner Abmessung (Durchmesser < 100 mm) der Werkstoff 2.4819 (Alloy C-276).

In Sonderfällen sind Titan oder Tantal die einzige Alternative.

Werkstoff 2.4856 (Alloy 625)

Kompensatorenbälge, welche Meerwasser ausgesetzt sind, werden bevorzugt aus Alloy 625 hergestellt. Der molybdänhaltige Werkstoff 2.4856 hat eine ausgezeichnete Beständigkeit gegen Loch-, Spalt- und Spannungsrisskorrosion.

Werkstoff 2.4610/2.4819 (Alloy C-4/C-276)

Bälge aus diesen beiden Werkstoffen werden in Chemie- und anderen verfahrenstechnischen Anlagen eingesetzt. Sie sind ausgezeichnet beständig gegen heiße Säuren, chloridhaltige Lösungen oder auch Chlorgas bis zu Temperaturen von 400 °C.

WERKSTOFFE FÜR HOHE TEMPERATUREN

Für höhere Temperaturen (> 550 °C), wo hohe Zunderbeständigkeit gefordert ist, kommen hochwarmfeste oder hitzebeständige Werkstoffe in Betracht, wenn sie ausreichende Verformbarkeit besitzen (z. B. 1.4828, 1.4876 oder 2.4856).

Werkstoff 1.4828

Der Werkstoff 1.4828 hat sich als Wickelschlauchliner in Abkoppelelementen und als Dehnkörper in Krümmern von Motoren bewährt. Der 1.4828 hat aufgrund seines hohen Siliziumgehaltes eine gute Zunderbeständigkeit.

Werkstoff 1.4876 (Alloy 800 H)

Der Werkstoff 1.4876 findet dort Anwendung, wo neben hohen Temperaturen auch eine Druckbeanspruchung vorliegt, z. B. in Zu- und Ableitungen zu Turboladern von Motoren. Der 1.4876, bei welchem Aluminium zulegiert ist, hat eine noch bessere Zunderbeständigkeit als der 1.4828, zudem liegen der Chrom- und Nickelgehalt deutlich höher, was ihn jedoch verteuert und die Verformbarkeit reduziert. Der 1.4876 weist exzellente Zeitstandfestigkeitskennwerte auf und ist bei Temperaturen über 550 °C für druckbeanspruchte Bauteile zugelassen.

Werkstoff 2.4856 (Alloy 625)

Treten korrosive Belastungen und hohe Temperaturen kombiniert auf, wird häufig der Einsatz der Nickelbasislegierung 2.4856 empfohlen.

WITZENMANN 1501de/19/10/23/pdf (HYDRA) (HYDRA) 1501de/19/10/23/pdf WITZENMANN

KOMPENSATOREN FÜR AGGRESSIVE MEDIEN

Eignung von Metallkompensatoren

Kompensatoren aus Metall sind grundsätzlich für die Durchleitung von kritischen Medien unter Druck und Temperatur geeignet. Die Flexibilität der gewellten Bälge von Kompensatoren erfordert im Allgemeinen wesentlich geringere Wanddicken als die übrigen Teile des Systems, in dem sie verwendet werden. Da eine Erhöhung der Wanddicke des Balges zur Abwendung von Korrosionsschäden nicht zweckmäßig ist, muss für die Fertigung des Balgelementes ein Werkstoff gewählt werden, der eine ausreichende Beständigkeit gegen alle während der gesamten Lebensdauer möglicherweise zu erwartenden aggressiven Medien aufweist. Der Balg muss häufig aus einem Werkstoff mit besserer Korrosionsbeständigkeit gefertigt werden, als der für die angeschlossenen Anlagenteile vorgesehene.

Zusätzlich sind korrosive Umgebungseinflüsse zu beachten.

Die Wahl des Werkstoffes muss alle möglichen Korrosionsarten, insbesondere Lochkorrosion, interkristalline Korrosion, Spaltkorrosion und Spannungsrisskorrosion berücksichtigen.

Auswahl des passenden Werkstoffes

Entsprechend der spezifischen Aggressivität des Mediums oder der umgebenden Atmosphäre ist der Werkstoff für die Balglagen auszuwählen. Empfehlungen zur Werkstoffbeständigkeit finden Sie in den Beständigkeitstabellen im Kapitel 18.

Armaturen-, Flanschwerkstoffe und Werkstoffe für Verankerungen

Bei der Wahl der Werkstoffe für Anschlussarmaturen steht die Festigkeit und Schweißbarkeit im Vordergrund. Für Flansche und Armaturen werden im Normalfall unlegierter Stahl und allgemeiner Baustahl eingesetzt. Liegen höhere Einsatztemperaturen vor, werden warmfeste Stähle verwendet. Bei höheren Beanspruchungen oder tieferen Temperaturen kommen Feinkornbaustähle und kaltzähe Stähle zum Einsatz.

Bei korrosionskritischen Bedingungen werden Armaturen aus Duplexstählen, nichtrostenden, ferritischen oder austenitischen Stählen und Nickelbasislegierungen verwendet.


Verantwortung des Herstellers für die passenden Kompensatoren

Der Kompensatorhersteller verantwortet die Auslegung des Kompensators für die gegebenen Drücke und Temperaturen sowie den Werkstoff bezüglich seiner Umformbarkeit und Schweißbarkeit.

Witzenmann bringt seine umfangreiche Erfahrung in die Beratung des Anwenders bei der Auswahl eines geeigneten Werkstoffes ein.

Mit Rücksicht auf die ausschließlich vom Anwender zu verantwortenden Einflüsse aus der Anlage, kann die Beratung des Kompensatorenherstellers nur unverbindlich sein. d.h. ohne Übernahme einer Haftung dafür, dass der Werkstoff für den Einzelfall richtig ausgewählt wurde.

In fast allen technisch orientierten Industriezweigen werden Kompensatoren für den sicheren Betrieb der Anlagen benötigt. Sie haben Aufgaben zu erfüllen, wie:

- Wärmedehnungen in Rohrleitungen kompensieren
- Schwingungen elastisch gelagerter Aggregate von den angeschlossenen Systemen abkoppeln
- Relativbewegungen zwischen Anlagenteilen elastisch ausgleichen
- Körperschall isolieren
- Kräfte und Momente an Anschlüssen reduzieren.

Der Einsatz der flexiblen, metallischen Kompensatoren im modernen Anlagenund Apparatebau ist nicht allein aus technischen Gründen erforderlich, ebenso wichtig ist er für die Erfüllung der Forderungen aller Industrien nach:

- Erhöhter Wirtschaftlichkeit
- Reduzierter Anlagengröße
- Montagefreundlichkeit
- Störungsfreiem Betrieb und
- Sicherheit bei Störfällen

HYDRA Kompensatoren erfüllen all diese Anforderungen und sind bei richtiger Auswahl und fachgerechtem Einbau:

- Druckfest
- Vakuumdicht
- Temperaturbeständig
- Korrosionsfest
- Langlebig
- Betriebssicher
- Wartungsfrei

Es steht ein umfangreiches Programm an Standard-Kompensatoren zur Verfügung. Bei speziellen Bedarfsfällen kann die Liefermöglichkeiten von Sonderausführungen jederzeit von erfahrenen Ingenieuren geprüft werden, wobei wir auf jahrzehntelange Erfahrungen aus praktisch allen Industriezweigen zurückgreifen können.

Engineering für den besonderen Fall

Wir sind immer bereit, Sie bei der Optimierung Ihrer Kompensationsaufgabe zu unterstützen, soweit das mit vertretbaren Mitteln machbar ist. Darüber hinaus bieten wir ein spezielles Engineering zur Lösung besonderer Aufgaben an:

- Optimierung von Kompensationssystemen mithilfe moderner Verfahren zur Rohrleitungsberechnung
- Konstruktive Optimierung von Bälgen und Anschlussteilen für Spezialanwendungen mit Unterstützung durch FE-Methoden
- Entwicklung von Sonderausführungen einschließlich der erforderlichen Herstellverfahren (Umformen, Schweißen, usw.)
- Durchführen von Versuchsreihen mit speziellen Produkten oder für besondere Anwendungen
- Unterstützung bei der Lösung von Korrosionsfragen, einschließlich Werkstoffempfehlungen und Korrosionstests

Kompensationsarten und Auswahlkriterien

Prinzipiell gibt es drei Kompensationsarten, die zu untersuchen sind, nämlich die Kompensation durch:

- Elastische Biegung vorhandener Rohrschenkel ("natürliche Kompensation")
- Axial-Kompensatoren
- Verankerte Kompensatoren (Gelenk-Kompensatoren)

Die zu betrachtenden Kriterien sind:

- Größe und Art der zu kompensierenden Bewegung
- Leitungsführung
- Kräfte und Momente auf Festpunkte und Anschlüsse
- Einbauraum für die Kompensatoren
- Gesamtkosten für die Kompensation
- Montagefragen

Dieser Kriterienvergleich gibt einen qualitativen Vergleich der Kompensationsarten Axial-Kompensatoren / Gelenk-Kompensatoren, der entscheidend hilfreich sein kann.

Kompensation durch Rohrbiegung

Die Frage, ob die Kompensation (z.B. der Wärmedehnungen) über die Eigenelastizität des Rohrsystems vorgenommen werden kann, erübrigt sich meist schon dadurch, dass bei größeren Durchmessern die dazu erforderlichen langen Rohrschenkel nicht zur Verfügung stehen (Bild 4.1). Eine künstliche Verlängerung der Rohre oder die Verlegung in Bögen scheidet aber im Regelfall aus wirtschaftlichen Gründen aus. Das haben wiederholt durchgeführte Untersuchungen ergeben. Auszunehmen sind beispielsweise Hochdruck-Dampfleitungen in Kraftwerken aus technischen Gründen.

Die Untersuchung kann sich im Allgemeinen auf Rohrdurchmesser unter DN 100 beschränken und ist auch nur dann sinnvoll, wenn die Rohre zusätzlich zu den Spannungen aus Innendruck noch nennenswerte wechselnde Spannungen aus den Bewegungszyklen aufnehmen können, ohne vorzeitig zu ermüden.

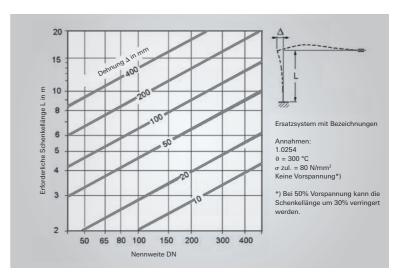


Bild 4.1 Kompensation durch Rohrschenkelbiegung ("natürliche Kompensation")

VERGLEICH DER KOMPENSATIONSARTEN

Axial-Kompensatoren

Bewegungsaufnahme:

Kleine bis mittlere axiale Bewegungsaufnahmen, bis ca. 200 mm

- Zusätzliche laterale und angulare Bewegungsaufnahme ist möglich
- Bei größeren Bewegungen (lange Strecken) sind mehrere Axial-Kompensatoren, auf die Strecke verteilt, erforderlich

Leitungsführung:

■ Keine Änderung der Flussrichtung

Festpunkte und Führungen:

- Größere Drücke und Nennweiten ergeben hohe Festpunktkräfte (Bild 4.2)
- An den Ecken abgewinkelter Systeme sind Festpunkte zu setzen
- Lange Strecken mit mehreren Axial-Kompensatoren erfordern Zwischenfestpunkte
- Direkt am Axial-Kompensator sind zusätzliche Führungen anzubringen

Einbauraum:

 Geringer Raumbedarf, Außendurchmesser sind nur unwesentlich größer als die Leitung selbst

Kosten:

- Geringe Stückkosten (bei langen Strecken sind mehrere Kompensatoren erforderlich)
- Eventuell hohe Kosten für Festpunkte und Führungen

Montage:

- Einfache Montage und Vorspannung der Kompensatoren
- Genau fluchtende Führung der Leitung notwendig
- Druckprobe nur nach vollständiger Fixierung an den Festpunkten möglich

Gelenk-Kompensatoren

Bewegungsaufnahme:

 Mittlere bis große Bewegungsaufnahmen senkrecht zur Kompensatorachse, in einer Ebene oder allseitig (Aufnahme der Hauptdehnung durch Lateral-Kompensatoren, kleine Restdehnungen durch die Leitung)

Leitungsführung:

- Leitungsumlenkung ist erforderlich
- Bei abgewinkelter Leitungsführung bieten sich Gelenk-Kompensatoren an

Festpunkte und Führungen:

- Festpunkte auch bei h\u00f6herem Druck relativ gering belastet, da Verankerung axiale Druckkraft aufnimmt
- Es wirken nur Verstellkräfte der Kompensatoren und Reibkräfte der Auflager
- Bei langen Leitungen können die Reibkräfte für die Festpunktauslegung problematisch werden
- Normale Führungen für die Leitung sind ausreichend (beim Einsatz von Lateral-Kompensatoren ergeben sich zusätzliche Kräfte und Momente auf Festpunkte und Führungen durch die Restdehnungen)

Einbauraum:

 Durch evtl. Leitungsumlenkung größerer Einbauraum als bei axialer Kompensation erforderlich

Kosten:

- Stückkosten höher als bei Axial-Kompensatoren
- Angular-Kompensatoren mindestens paarweise einbauen
- Bei längeren Leitungssträngen sind Kosten, bezogen auf die Bewegungsaufnahme, mit Axial-Kompensatoren vergleichbar
- Festpunkte sind kostengünstiger

Montage:

- Montageaufwand von Gelenken ist etwas größer
- Lage der Drehachsen und Zuganker ist genau zu beachten
- Normaler Aufwand für Rohrführungen
- Druckprobe ohne Festpunkt durchführbar

38 WITZENMANN 1501de/19/10/23/pdf **(HYDRA)** (HYDRA) 1501de/19/10/23/pdf **WITZENMANN**

EINSATZGRENZEN VON AXIALKOMPENSATOREN

Eine grobe Vorstellung über die Einsatzmöglichkeiten von Axial-Kompensatoren in Rohrleitungen kann Bild 4.2 vermitteln. Die dafür getroffenen Annahmen sind zu beachten. Für eine endgültige Entscheidung ist in den meisten Fällen eine genauere Untersuchung der technischen Randbedingungen und ein Kostenvergleich sinnvoll. Das wichtigste Kriterium hierfür ist die Festpunktkraft.

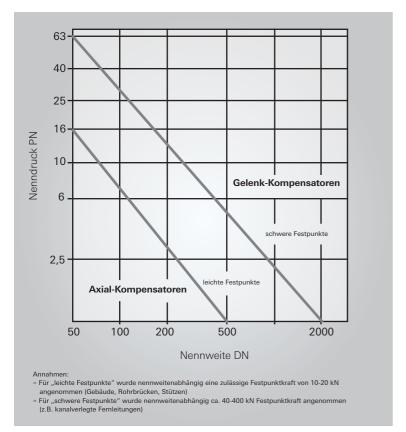


Bild 4.2 Einsatzgrenzen von Axial-Kompensatoren

Festpunktkraft

Die Festpunktkraft setzt sich bei Verwendungen von Axial-Kompensatoren zusammen aus axialer Druckkraft F_p , axialer Verstellkraft F_a und den Reibwiderständen für Auflager F_p , die sich im Einzelnen wie folgt errechnen:

Axiale Druckkraft in kN

(siehe auch Bild 4.3)

(4.1)
$$F_p = 0.01 \text{ A} \cdot \text{p}$$

wirksamer Querschnitt A in cm² (aus Maßtabellen der Axial-Kompensatoren) Druck p in bar (max. Druck, z.B. Prüfdruck, einsetzen)

Axiale Verstellkraft in kN

$$(4.2) \qquad \mathsf{F}_{\delta} = 0.001 \; \mathsf{c}_{\delta} \cdot \delta$$

axiale Federrate c_{δ} in N/mm (aus Maßtabellen der Axial-Kompensatoren) halber Gesamtweg δ in mm (bei 50 % Vorspannung)

Reibwiderstände der Lager in kN

$$(4.3) \quad \mathsf{F}_{\mathsf{R}} = \Sigma \; \mathsf{F}_{\mathsf{L}} \cdot \; \mathsf{K}_{\mathsf{L}}$$

$$\label{eq:continuous_system} \begin{split} & \text{Erfahrungswerte für } K_L \colon \\ & \text{Stahl / Stahl:} & 0,2-0,5 \\ & \text{Stahl / PTFE} & 0,1-0,2 \\ & \text{Rollenlager:} & 0,05-0,1 \end{split}$$

Den entscheidenden Anteil der Festpunktkraft liefert beim Einsatz von Axial-Kompensatoren die axiale Druckkraft. Die Verstellkraft ist bei unseren vielwandigen Bälgen relativ bedeutungslos.

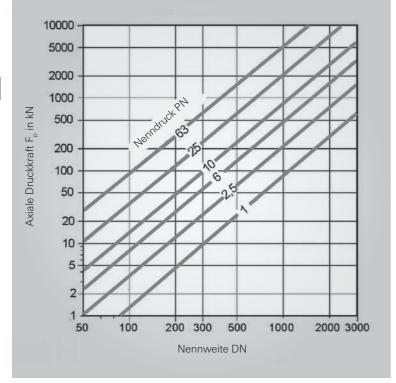


Bild 4.3 Axiale Druckkraft

Verstellkräfte und -momente

Verstellkräfte und Verstellmomente der Kompensatoren sind anhand der Federraten zu berechnen, die in den Maßtabellen angegeben sind. Die dort angegebenen Werte gelten streng genommen nur für den kalten Zustand (Raumtemperatur); im Betriebszustand sind im Allgemeinen kleinere Werte zu erwarten, weshalb die in den Tabellen angegebenen Werte für Leitungsberechnungen herangezogen werden können. Bei Temperaturen bis 200 °C sind die Abweichungen praktisch zu vernachlässigen. Bei höheren Temperaturen lassen die Reduzierfaktoren in der folgenden Tabelle eine Abschätzung zu, wenn die Standard-Werkstoffe (1.4541 oder 1.4876) Verwendung finden. Bei sehr großen Auslenkungen oder Betriebsdrücken sollte der Hersteller bei der Berechnung der Verstellkräfte oder -momente einbezogen werden.

Reduzierfaktoren für Federraten

Arbeitstemperatur ♂ in °C	200	300	400	500	600	700	800	900
Reduzierfaktor K _c	0,93	0,9	0,86	0,83	0,80	0,75	0,71	0,67

Federrate bei Temperatur

$$(4.4) c_{i\theta} = K_c \cdot c_i$$

Federrate, allgemein c. (aus Maßtabellen)

GELENK-KOMPENSATOREN

Beim Einsatz von Gelenk-Kompensatoren entfällt die axiale Druckkraft als Festpunktbelastung. Sie wird durch die Verankerung übertragen. Die Festpunkte werden nur durch die Verstellkräfte der Kompensatoren und durch die Reibwiderstände der Lager belastet, sowie durch eventuelle Kräfte und Momente aus Rohrschenkelbewegung, wenn im Zusammenhang mit Lateral-Kompensatoren Restdehnungen in die Rohrleitungen gehen. In diesem Fall können die Reibwiderstände der Lager bedeutend werden, weil die Dehnung langer Rohrstrecken in ein einziges Kompensationssystem geleitet werden kann und dabei mehrere Auflager bewegt werden.

Kompensation mit Angular- und Lateral-Kompensatoren

Gelenk-Kompensatoren wurden bisher gemeinsam betrachtet, d.h. es wurde noch nicht zwischen Angular- und Lateral-Kompensatoren unterschieden. Letztlich geht es bei dieser Frage darum, ob ein Zweigelenk-System für die Kompensation ausreicht oder ob eine vollständige Kompensation mit drei Gelenken erforderlich ist.

Zwei Gelenke (Angular-Kompensatoren) – alternativ ein Lateral-Kompensator – sind anwendbar, wenn die verbleibende Restdehnung aus dem Leitungsversprung sowie der Axialversatz des Zweigelenks aus der Bewegung ("Pfeilhöhe") von den anschließenden Rohrschenkeln durch Biegung aufgenommen werden kann (siehe dazu auch Bild 4.1) und wenn die dabei entstehenden Kräfte und Momente vom System zu ertragen sind. Die Frage, ob man besser zwei Gelenke oder einen Lateral-Kompensator wählt, ist meist nur über die Kosten zu entscheiden.

Kompensation mit druckentlasteten Kompensatoren

In einigen Fällen sind druckentlastete Kompensatoren oder Streckenverankerungen die technisch günstige aber möglicherweise teurere Alternative. Die dafür prinzipiell gegebenen Möglichkeiten sind im Kapitel 12 "Axiale Druckkraft und entlastete Konstruktionen" dargestellt.

Die im vorliegenden Kapitel behandelten Kriterien zur Auswahl des geeigneten Kompensationssystems sollten in den meisten praktischen Fällen ausreichen, sich über die Art der einzusetzenden Kompensatoren klar zu werden. Die endgültige Entscheidung hängt unter Umständen noch von weiteren Daten ab, z.B. der Baulänge der Kompensatoren, die erst später bestimmt wird. Dies wird häufig zu einem nochmaligen Überdenken des Gesamtsystems führen. Um unter den technisch möglichen Systemen das wirtschaftlichste auszuwählen, hilft nur eine Kostengegenüberstellung. Bei einer Wirtschaftlichkeitsbetrachtung darf man nicht nur die Kosten der Kompensatoren betrachten; es sind auch die mit der jeweiligen Kompensation zusammenhängenden sonstigen Kosten zu berücksichtigen:

- Festpunkte
- Führungen und Unterstützungen
- Bauwerke/Schächte
- Montageaufwand
- Sonstiges

Im Zweifelsfall oder bei komplizierten Aufgabenstellungen sollten Sie die Beratung unserer Fachleute in Anspruch nehmen.

SYMBOLE FÜR DIE SYSTEMDARSTELLUNG

Kompensator-Symbole

Bezeichnung	Ebene Darstellung nac	Isometrische Darstellung	
	in Bildebene	senkrecht zur Bildebene	
Axial - Kompensator	-1111-	-1111-	-1111-
Angular - Kompensator als Einfachgelenk	-+	-[11]-	⊕ 🗫
Angular - Kompensator als Kardangelenk	-+{+-	-[ញ៌-	₩ 🐃
Lateral - Kompensator einseitig beweglich		-[111—111]-	
Lateral - Kompensator allseitig beweglich (in Kreisebene)	- - - - -	-[[][]-	

Bild 4.4

Halterungs-Symbole

Bezeichnung	Darstellung	Bezeichnung	Darstellung
Festpunkt FP Zwischenfestpunkt ZFP	<u>\</u>	Auflager AL	
Gleitfestpunkt GFP	L _{\subseteq}}	Rollenlager RL	
Führungslager FL	_=_	Federhänger FH	
Kreuzgleitführung KGL	~	Konstanthänger KH	<u> </u>

Rild 45

ÜBERSICHT ÜBER DIE WICHTIGSTEN KOMPENSATIONSARTEN

Prinzipielle Merkmale

Axiale Kompensation (Bild 4.6)

- Einfache Konzeption
- Kleine bis mittlere Bewegungsaufnahme
- Allseitige Bewegung möglich
- Keine Leitungsumlenkung erforderlich
- Große Axialkräfte bei höheren Drücken
- Starke Festpunkte und gute Führungen erforderlich

Angulare Kompensation (Bild 4.7)

- Schwierige Konzeption
- Mittlere bis große Bewegungen möglich
- Keine axiale Bewegung möglich
- Leitungsumlenkung erforderlich
- Relativ geringe Festpunktbelastung
- Normale Führungen ausreichend

Laterale Kompensation (Bild 4.8)

- Relativ einfache Konzeption
- Kleine bis mittlere Bewegungsaufnahme
- Keine axiale Bewegung möglich
- Leitungsumlenkung erforderlich
- Relativ geringe Festpunktbelastung
- Restdehnungen als Zusatzbelastung
- Normale Führungen teils mit Spiel ausreichend

Bild 4.6

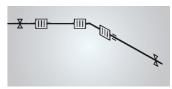


Bild 4.7

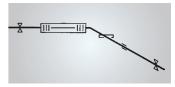



Bild 4.8

Grundlage für die Auswahl der Kompensatoren ist unser umfangreiches Standardprogramm, dessen einzelne Typenreihen nach Nennweiten, Nenndrücken und Nennwegen ausgelegt und geordnet sind. Das ermöglicht eine schnelle und sichere Auswahl, gewährleistet kostengünstige, durchkonstruierte Ausführungen und ermöglicht kurze und zuverlässige Lieferzeiten.

In den Fällen, in denen der Kompensator auf den aktuellen Betriebsfall ausgelegt wird, optimieren ihn unsere Ingenieure für die technischen und wirtschaftlichen Anforderungen. Schon im Angebotsfall wird die exakte Dimensionierung festgelegt.

AUSLEGUNGSVORSCHRIFTEN

Für eine sachgerechte Dimensionierung der Kompensatoren ist der Hersteller verantwortlich. Sie muss entsprechend dem "Stand der Technik" erfolgen, sowie nationale und internationale Vorschriften einhalten. Da eine Vielzahl von drucktragenden Rohrleitungen unter die Druckgeräterichtlinie (DGRL) fallen, gelten auch die zugehörigen Kompensatoren als druckhaltende Ausrüstungsteile im Sinne der Druckgeräterichtlinie, die eine CE-Kennzeichnung tragen müssen.

Die Druckgeräterichtlinie (DGRL)

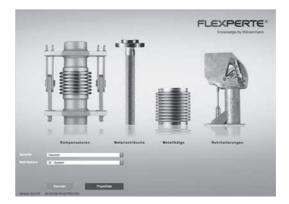
Die DGRL ist auf alle Kompensatoren mit einem maximalen zulässigen Druck PS > 0,5 bar anzuwenden, soweit ihre spezielle Anwendung das nicht ausdrücklich ausschließt. Aus diesem Grund erfüllen auch unsere Standard-Kompensatoren die zusätzlichen Anforderungen der Druckgeräterichtlinie.

Da unsere Kompensatoren in einem sehr weiten Spektrum von Anwendungen eingesetzt werden, haben wir sie so ausgelegt, dass sie für alle Kategorien bis zur Kategorie IV eingesetzt werden können.

Witzenmann hat ein Qualitätssicherungssystem entsprechend der DGRL Anhang III, Modul H/H1 für den Anwendungsbereich von Auslegung, Herstellung und Inverkehrbringen von Kompensatoren und Metallbälgen eingeführt.

Dies gilt auch für alle weiteren Voraussetzungen, wie für die Zeugnisbelegung des Vormaterials, für die Fertigungsverfahren und das Personal. Dies bedeutet, dass Sie als Kunde sich auf die DGRL-konforme Ausführung und Auslegung der Kompensatoren verlassen können. Die Abwicklung gemäß DGRL erfolgt nach festgelegten Modulen, die abhängig von der Kategorie gewählt werden. Entsprechend wird der Prüfumfang und die Dokumentation festgesetzt.

Witzenmann - Mitglied der EJMA


Witzenmann ist ein Mitglied der "Expansion Joints Manufacturers Association" (EJMA). Jeder von Witzenmann produzierte Kompensator kann genau nach den Richtlinien der EJMA ausgelegt und hergestellt werden.

Detaillierte Berechnungen belegen die genaue Ausführung gemäß der aktuellsten Ausführung der EJMA und können jedem Kunden zur Verfügung gestellt werden.

FLEXPERTE – KNOWLEDGE BY WITZENMANN

Flexperte ist eine Auslegungssoftware für flexible metallische Elemente. Sie ist eine speziell entwickelte Software, die nach den aktuellen Auslegungsregeln die für den Bedarfsfall geeigneten Produkte aus den Standardbaureihen auswählt. Neben der Auswahl der Kompensatoren kann der Anwender mit dem Programm auch Metallbälge, Metallschläuche und Rohrhalterungen auslegen.

Nach Eingabe der Betriebsbedingungen erhält der Anwender eine Auswahl von geeigneten Produkten mit allen notwendigen Informationen und Skizzen für die direkte Weiterverarbeitung als Anfrage oder Bestellung.

Das Programm steht in der vollen Funktionalität für die direkte Nutzung auch unter http://www.flexperte.de online zur Verfügung.

SYMBOLE UND FORMELZEICHEN

â	Amplitude in mm
С	Federrate
C _δ	Axiale Federrate in N/mm
Ca	Angulare Federrate in Nm/Grad
α C _λ	Laterale Federrate in N/mm
C ¹³	Federrate bei Temperatur
C _r	Reibungsfaktor in Nm/bar oder N/bar
C _p	Druckfaktor in Nm/Grad bar oder N/mm bar
А, В, С	Leitungsstrecken im Gelenksystem in m
D _a	Balgaußendurchmesser in mm
DN	Nennweite
K ₁ , K ₂ , K ₃	Kompensatoren im Gelenksystem
K	Abminderungsfaktor für den Druck
K _p K _Δ L	Abminderungsfaktor für die Bewegung
K _c	Abminderungsfaktor für die Federrate
-	gewellte Länge des Balges in mm
*	Gelenkabstand / Balgmittenabstand in mm
l _z	Zwischenrohrlänge in mm
L	Länge einer Rohrstrecke in m
N	Lastspielzahl
PN	Nenndruck
P_A	Arbeitsdruck in bar
P_{P}	Prüfdruck in bar
P _{RT}	Kaltdruck in bar
H _{m/100000}	Zeitstandfestigkeit (100.000 Stunden bis Bruch) in N/mm ²
Π _{p 0,2}	Dehngrenze mit 0,2 % bleibender Dehnung in N/mm ²
₹ _{p,RT}	Dehngrenze bei Raumtemperatur N/mm²
R _{p,⊕}	Dehngrenze bei Temperatur in N/mm²
α	Angularbewegung nach einer Seite in Grad
α	Mittlere Wärmedehnzahl in mm/mK
α_{\circ}	druckloser Biegewinkel, einseitig in Grad
α_1 , α_2 , α_3	Biegewinkel der Kompensatoren K ₁ , K ₂ , K ₃ in Grad
δ	Axialbewegung, einseitig (Längung oder Stauchung), in mm
δ_{RT}	Kaltwert der Axialbewegung, einseitig, in mm
Δ	Bewegung, allgemein in mm

$\Delta_{_{ m P}}$	Druckdehnung in mm
Δ_{ϑ}	Wärmedehnung in mm
$\Delta \vartheta$	Temperaturdifferenz in °C
λ	Lateralbewegung, einseitig, in mm
λ_{0}	Druckloser Lateralweg, einseitig, in mm
$\lambda_{\circ} \ artheta$	Temperatur in °C
ϑ_{\circ}	Montagetemperatur in °C
$artheta_{_{ m O}}$	Arbeitstemperatur in °C
ω	axiale Eigenfrequenz in Hz

radiale Eigenfrequenz in Hz

Indizes

 ω_{r}

o drucklos,	Montagezustand
o drucklos,	Montagezustand

c für Federrate calc berechnet

A Arbeits..., auf Strecke A bezogen

B auf Strecke B bezogen L lastspielzahlabhängig

N Nenn ...

i-ter Wert einer Wertmenge, Ersatzzeiger für Index der Bewegungsart

P druckabhängig RT bei Raumtemperatur reqd erforderlich

z Zwischenrohr zul. zulässig

 $\begin{array}{ll} \alpha & \text{angularwegabhängig} \\ \delta & \text{axialwegabhängig} \\ \lambda & \text{lateralwegabhängig} \\ \vartheta & \text{temperaturabhängig} \\ \Delta & \text{bewegungsabhängig} \end{array}$

52 WITZENMANN 1501de/19/10/23/pdf **HYDRA (HYDRA)** 1501de/19/10/23/pdf **WITZENMANN 53**

UNTERTEILUNG DER ROHRLEITUNG

Ein Rohrleitungssystem ist in den meisten Fällen für die richtige Kompensation in geeignete Abschnitte zu unterteilen, die jeweils durch Festpunkte abgetrennt sind. Dabei ist die Kompensationsart zu berücksichtigen. Maschinen oder Behälter sind als Festpunkte zu betrachten, wenn sie nicht elastisch gelagert sind.

Axiale Kompensation

Es sind nur gerade Rohrstrecken ohne Versprünge erlaubt. Lange gerade Strecken sind durch Zwischenfestpunkte zu unterteilen, wenn mehrere Axial-Kompensatoren zur Kompensation der Gesamtstrecke erforderlich sind. Zwischen zwei Festpunkten (oder Zwischenfestpunkten) darf nur jeweils ein Kompensator angeordnet werden.

An die Eckpunkte von Leitungsumlegungen sind Festpunkte zu setzen. Eventuell kommt ein Gleitfestpunkt in Frage, wenn der Axial-Kompensator (oder ein Universal-Kompensator) lateral beansprucht werden darf (Bilder 5.1 bzw. 5.2).

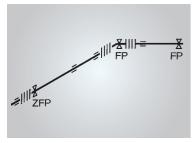


Bild 5.1 Anordnung von Axial-Kompensatoren

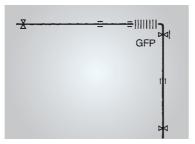


Bild 5.2 Anordnung eines Universal-Kompensators

Kompensation mit Gelenksystemen

Bei der Unterteilung eines komplexeren Rohrsystems sind die in den Bildern 5.3 bis 5.5 angegebenen prinzipiellen Teilsysteme anzustreben: U-System, L-System oder Z-System. Eine gerade Strecke ist für die Kompensation mit Gelenk-Kompensatoren ungeeignet. Als "künstliche" Umlenkung wird daher meist ein U-System geschaffen.

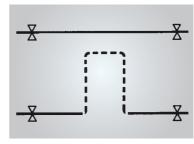


Bild 5.3 Gerade Strecke, U-System

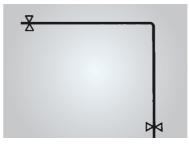


Bild 5.4 L-System

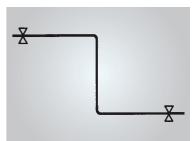


Bild 5.5 Z-System

ERMITTLUNG DER BEWEGUNGSWERTE

Von den Kompensatoren aufzunehmende Relativbewegungen können sein:

- Druckdehnungen
- Schwingungen
- Montageausgleich
- Fundamentsenkungen
- Wärmedehnungen

Die größten Bewegungswerte liefern normalerweise die Wärmedehnungen. Sie werden anschließend gesondert und ausführlich behandelt.

Druckdehnungen

Druckdehnungen treten an Behältern und in Rohrleitungen unter Druckbeanspruchung auf. Sie nehmen aber erst mit größeren Abmessungen Werte an, die unter Umständen bei der Kompensation von Einfluss sein können. Zur Abschätzung ihrer Größe wird berücksichtigt, dass in einem geschlossenen langen Zylinder die Längsspannungen aus Druck halb so groß sind wie die Umfangsspannungen. Geht man von einer vollen Druckauslastung aus, so gilt für Normalstahl mit $R_{p,0,2}=210\ N/mm^2$ und $E=21\cdot 10^4\ N/mm^2$ und E=1,5 (Sicherheitsfaktor bei Druckbehältern) unter Berücksichtigung der Ouerkontraktion:

$$(5.1) \Delta_{p} \approx 0.1 \text{ mm/m}$$

Dieser Wert ist im Allgemeinen vernachlässigbar, außer z.B. bei sehr hohen Kolonnen oder Behältern, wie Winderhitzern, deren axiale Druckdehnung Kompensatoren mit großen Durchmessern in Verbindungsleitungen lateral beanspruchen können.

Rohrleitungen mit Axial-Kompensatoren erfahren wegen der fehlenden Längskraft keine Druckdehnung.

Schwingungen

Schwingungen treten auf an Maschinen mit bewegten Massen (z.B. Turbomaschinen, Kolbenmaschinen und Zentrifugen). Sie werden durch Frequenz und Amplitude definiert. Die Frequenzen sind in erster Linie drehzahlabhängig; darüber hinaus sind bei diesen Aggregaten Oberschwingungen mit Vielfachen der Drehzahl aber nur geringen Amplituden feststellbar.

Amplituden von Dauerschwingungen liegen üblicherweise bei gut ausgewuchteten Maschinen unter 1 mm und nehmen nur beim Anfahren und Durchfahren von kritischen Drehzahlen kurzzeitig größere Werte an (siehe auch Kapitel 13 "Schwingungen und Schall"). Auszunehmen sind z.B. Zentrifugen, bei denen erheblich größere Schwingungsamplituden auftreten können.

Montageausgleich

Kompensatoren können zum Ausgleich von Montage-Ungenauigkeiten herangezogen werden, wenn das bei der Auswahl des Kompensators berücksichtigt wurde. Da es sich dabei um eine einmalige Bewegung handelt, kann sie theoretisch vom Kompensator ohne Einbuße an Lebensdauer ertragen werden; praktisch kann es aber sehr schnell zu einem ganzen oder teilweisen Blocksetzen der Wellen kommen, wodurch die bestimmungsmäßige Bewegungsaufnahme behindert würde und der Kompensator frühzeitig versagen müsste. Diese Gefahr ist besonders groß, wenn ein relativ kurzer Axial-Kompensator zum Ausgleich von seitlichem Montageversatz herangezogen wird.

Fundamentsenkungen

Fundament- und Bodensenkungen sind normalerweise einmalige Bewegungen und können daher für einen Kompensator größer sein als die Werte, die für 1000 Lastspiele gelten. Wenn einmalige Fundamentsenkungen als alleinige Bewegungen zu erwarten sind, kann unter Umständen sogar eine übermäßige Verformung der Wellen akzeptiert werden, der Kompensator würde dicht bleiben. Absenkungen von Tanks, die beim Füllen auftreten und beim Entleeren wieder zurückgehen, sind wie übliche Kompensationsbewegungen lastspielabhängig zu behandeln.

Wenn für die Montage und Demontage von Armaturen Platz geschaffen werden muss, können dafür geeignete Kompensatoren verwendet werden, sogenannte Ausbaustücke (siehe Kapitel 8 "Sonderausführungen", Bild 8.16). Die Häufigkeit der Montagevorgänge ist meist so gering, dass der Kompensator dabei eine größere Bewegung – bis zum Blocksetzen der Wellen – ertragen kann.

Wärmedehnungen

Die lineare Wärmedehnung metallischer Bauteile, bezogen auf eine Temperaturdifferenz, lässt sich über die werkstoffabhängige Ausdehnungszahl ermitteln.

Wärmedehnung Δ_a in mm

$$(5.2) \qquad \Delta_{\alpha} = L \cdot \overline{\alpha} \cdot \Delta \vartheta$$

Bauteillänge L in m (z.B. Rohrstrecke zwischen zwei Festpunkten) Mittlerer Wärmeausdehnungskoeffizient $\overline{\alpha}$ in mm/mK (siehe Bild 5.6) Temperaturdifferenz $\Delta \vartheta$ in K (Betriebstemperatur zu Montagetemperatur)

Werkstoff	Temperaturbereich von 20 °C bis				
	100 °C	200 °C	300 °C	400 °C	500 °C
Ferrit	0,0125	0,013	0,0136	0,0141	0,0145
Austenit 1.4541	0,016	0,0165	0,017	0,0175	0,018
Kupfer	0,0155	0,016	0,0165	0,017	0,0175
Aluminiumlegierung (AIMg3)	0,0237	0,0245	0,0253	0,0263	0,0272

Bild 5.6 Mittlerer Wärmeausdehnungskoeffizient ā in mm/mK

Berücksichtigung der Montagetemperatur

Normalerweise kann die Montagetemperatur mit $\vartheta_{_{0}}=15$ bis 20 °C angenommen werden für die Ermittlung der Temperaturdifferenz $\Delta\vartheta$, die in die Dehnungsberechnung eingeht. Bei niedrigen Betriebstemperaturen um 100 °C muss man etwas genauer vorgehen und eine mittlere Stillstandstemperatur ansetzen. Außerdem ist zu überprüfen, ob sich die Leitung bei der tiefstmöglichen Stillstandstemperatur noch genügend zusammenziehen kann, ohne dass die Kompensatoren zu stark gestreckt oder Gelenksystemen geometrisch unverträgliche Bewegungen aufgezwungen werden. Besonders bei Leitungen, die eigentlich kalt sind und sich nur aufgrund der jeweils herrschenden Außentemperatur dehnen oder zusammenziehen, ist auf die möglichen Extremstellungen des Kompensators oder des Kompensationssystems bei höchster oder tiefster Außentemperatur zu achten und auf die richtige dazu passende Vorspannung bei der herrschenden Montagetemperatur.

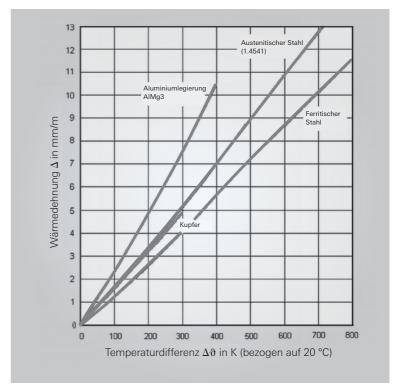


Bild 5.7 Wärmedehnung von Metallen

REALE BEWEGUNGSWERTE

Aus den vorher bestimmten Relativbewegungen – meist Wärmedehnungen – der einzelnen Rohrabschnitte lässt sich die reale Bewegungsaufnahme für die einzelnen Kompensatoren ermitteln.

Axiale und laterale Bewegungsaufnahme

Werden Axial- oder Lateral-Kompensatoren eingesetzt, entsprechen die ermittelten Bewegungswerte den realen Kompensatorwegen.

Angulare Bewegungsaufnahme

Für Gelenksysteme mit Angular-Kompensatoren sind die Bewegungswerte Δ in Winkelbewegung umzurechnen. Das kann mit guter Näherung anhand des Diagramms in Bild 5.9 erfolgen.

Die Umrechnung ist exakt, wenn es sich um einfache Zwei-Gelenk-Systeme mit senkrecht übereinander liegenden Gelenken handelt. Bei anderen Systemen werden die Winkel annähernd genau bestimmt, wobei der Unterschied zum exakten Winkel klein ist und von der Anordnung der Gelenke und der Größe der aufzunehmenden Bewegung abhängt. Je nach Gelenksystem ist zunächst nach Bild 5.8a und 5.8b die relevante Bewegungsgröße Δ zu bestimmen. Zusammen mit dem zugeordneten Gelenkabstand A (oder B) wird der Kompensatorwinkel α aus dem Diagramm (Bild 5.9) abgelesen.

Die Gelenkabstände A und B sind im Rahmen der baulichen Gegebenheiten so groß wie möglich und noch sinnvoll zu wählen, um kleine Biegewinkel der Kompensatoren und vor allem, um möglichst geringe Kräfte und Momente im Rohrleitungssystem zu erhalten. Der Abstand C ist so klein wie möglich zu wählen.

Die ermittelten Biegewinkel sind reale Winkel des warmen Systems und gelten auch für die Vorspannungen des kalten Systems. Wenn ohne Vorspannung gearbeitet werden soll, ergeben sich etwa doppelt so große Winkel, die meist entsprechende größere Kompensatoren erforderlich machen(vgl. Bild 5.8a, 5.8b).

Für die Wahl der geeigneten Kompensatoren müssen die realen Biegewinkel Oin Nennwinkel umgerechnet werden, wobei sich die eventuellen Einflüsse von Betriebstemperatur, Druckauslastung und Lastspielzahlen berücksichtigen lassen.

Da das prinzipiell für alle Bewegungsarten gilt, wird das Thema für alle Kompensatoren anschließend gemeinsam behandelt.

Definitionen zu den Bildern 5.8a, 5.8b und 5.9

"Berechnung der Biegewinkel von Gelenksystemen"

Abstände

- A Hauptabstand
 - U- und Z-Anordnung: Abstand der Gelenke im oder am Leitungsversprung L-Anordnung: Abstand der Gelenke im gleichen Strang
- B Nebenabstand (nur bei Drei-Gelenk-System) alle Anordnungen: Abstand zum Ausgleichsgelenk U-Anordnung: Abstand Basisgelenk / Scheitelgelenk
- C Eckabstand (nur bei Drei-Gelenk-System)
 alle Anordnungen: Abstand zwischen den Gelenken "über Eck"
 U-Anordnung: Abstand als "B" bezeichnet

Gelenke

- K, Außengelenk an Strecke A
- K₂ Zweites Gelenk an Strecke A(U-Anordnung: zweites Basisgelenk)
- K₃ Zweites Außengelenk / Ausgleichsgelenk (U-Anordnung: Scheitelgelenk) Nur bei Drei-Gelenk-Systemen existent!

Bewegungen der Leitungsstränge

- Δ₁ Erste Hauptbewegung
 Bewegung des ersten Hauptstranges: K1 zugeordnet
- Δ₂ Zweite HauptbewegungBewegung des zweiten Hauptstranges
- $\Delta_{\rm 3}$ Nebenbewegung Bewegung im Leitungsversprung (nur bei Z-Anordnung)

WITZENMANN 1501de/19/10/23/pdf **(HYDRA**) **(HYDRA**) 1501de/19/10/23/pdf **WITZENMANN**

Berechnung der Biegewinkel in Gelenksystemen

Nr.	Gelenksystem	Ersatzsystem	Biegewinkel in Grad bei 50% Vorspannung
1	Zwei-Gelenk	- Δ · α2	$\Delta = \frac{1}{2} (\Delta_1 + \Delta_2)$ $\alpha_1 = (\Delta, A) \text{ cf. Bild 5.9}$ $\alpha_2 = \alpha_1$
2	Zwei-Gelenk in Z-Anordnung	α ₁ α ₂	$\Delta = \frac{1}{2} (\Delta_1 + \Delta_2)$ $\alpha_1 = (\Delta, A) \text{ cf. Bild 5.9}$ $\alpha_2 = \alpha_1$
3	Zwei-Gelenk räumlich		$\Delta = \frac{1}{2} \sqrt{\Delta_1^2 + \Delta_2^2}$ $\alpha_1 = (\Delta, A) \text{ cf. Bild 5.9}$ $\alpha_2 = \alpha_1$
4	Drei-Gelenk in U-Anordnung	-10-102 (d)	$\Delta = \frac{1}{4} (\Delta_1 + \Delta_2)$ $\alpha_1 = (\Delta, A) \text{ cf. Bild 5.9}$ $\alpha_2 = \alpha_1$ $\alpha_3 = 2 \cdot \alpha_1$
5	Drei-Gelenk in L-Anordnung	Gardina AB	$\begin{split} &\Delta_{\rm A} = \frac{1}{2} \left(\Delta_2 + \Delta_1 \frac{\rm C}{\rm B} \right) \\ &\Delta_{\rm B} = \frac{1}{2} \Delta_1 \\ &\alpha_1 = \left(\Delta_{\rm A'} \rm A \right) \text{cf. Bild 5.9} \\ &\alpha_3 = \left(\Delta_{\rm B'} \rm B \right) \text{cf. Bild 5.9} \\ &\alpha_2 = \alpha_1 + \alpha_3 \end{split}$

Bild 5.8a

Nr.	Gelenksystem	Ersatzsystem	Biegewinkel in Grad bei 50% Vorspannung
6	Drei-Gelenk in Z1-Anordnung $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Og O	$\begin{split} &\Delta_{\rm A} = \frac{1}{2} \left(\Delta_{\rm 1} + \Delta_{\rm 2} + \Delta_{\rm 3} \frac{\rm C}{\rm B} \right) \\ &\Delta_{\rm B} = \frac{1}{2} \Delta_{\rm 3} \\ &\alpha_{\rm 1} = \left(\Delta_{\rm A}, \rm A \right) {\rm cf. Bild 5.9} \\ &\alpha_{\rm 3} = \left(\Delta_{\rm B}, \rm B \right) {\rm cf. Bild 5.9} \\ &\alpha_{\rm 2} = \alpha_{\rm 1} + \alpha_{\rm 3} \end{split}$
7	Drei-Gelenk in Z2-Anordnung $ \begin{array}{c c} \Delta_2 & -B - \\ \hline K_3 & K_2 & A \\ \hline K_1 & \Delta_1 \\ +C - & -C \end{array} $	Δ _A Δ _B α ₂ α ₃ α ₂	$\begin{split} & \Delta_{\rm A} = \frac{1}{2} \left(\Delta_2 + \Delta_1 \right) \\ & \Delta_{\rm B} = \Delta_{\rm a} \frac{{\rm C}}{{\rm A}} \\ & \alpha_1 = \left(\Delta_{\rm A}, {\rm A} \right) {\rm cf. Bild 5.9} \\ & \alpha_3 = \left(\Delta_{\rm B}, {\rm B} \right) {\rm cf. Bild 5.9} \\ & \alpha_2 = \alpha_1 + \alpha_3 \end{split}$
8	Drei-Gelenk räumlich	ΔΑ 03/19/02 01/14/ΔΒ	$\begin{split} & \Delta_{_{A}} = \ \frac{1}{2} \left(\sqrt{\Delta_{_{1}}^{ 2} + \Delta_{_{2}}^{ 2}} + \Delta_{_{3}} \ \frac{\textbf{C}}{\textbf{B}} \right) \\ & \Delta_{_{B}} = \ \frac{1}{2} \ \Delta_{_{3}} \\ & \alpha_{_{1}} = \left(\Delta_{_{A'}} \ A \right) \ \text{cf. Bild 5.9} \\ & \alpha_{_{3}} = \left(\Delta_{_{B'}} \ B \right) \ \text{cf. Bild 5.9} \\ & \alpha_{_{2}} = \alpha_{_{1}} + \alpha_{_{3}} \end{split}$

Bild 5.8b

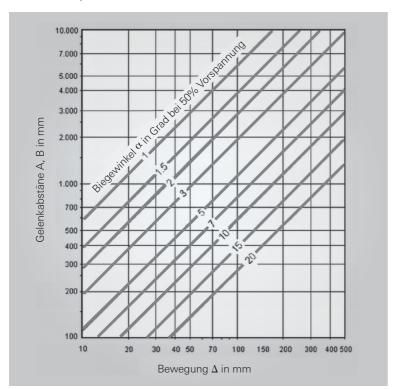


Bild 5.9 Biegewinkel in Gelenksystemen

Universelle Bewegungsaufnahme

Einfache Axial- wie auch Universalkompensatoren, die aus zwei über ein Zwischenrohr verbundenen Bälgen bestehen, können alle Bewegungsformen - axial, angular und lateral - ausführen. Die in unserem nachfolgend beschriebenen Standardprogramm genannten Bewegungsaufnahmen (axial, angular, lateral) sind alternativ zu sehen, d.h. ihre prozentualen Anteile dürfen aufsummiert 100% nicht überschreiten.

Sind darüber hinausgehende Anforderungen zu erfüllen, können Kombinationen mehrerer Axial-und Universal-Kompensatoren konzipiert werden.

Die Berechnungsformeln für die mögliche angulare oder laterale Bewegungsaufnahme, die dem axialen Nennweg $2\delta_{\text{N}}$ äquivalent ist, werden angegeben, darüber hinaus Gleichungen für die Ermittlungen der Federraten zu diesen Bewegungen, die sehr gute Näherungen darstellen.

Es ist unbedingt zu beachten, dass für Universal-Kompensatoren in fast allen Fällen nicht mehr die gleichen Drücke zugelassen werden können, die für Axial-Kompensatoren gelten.

Die erforderlichen Druckabminderungen sind den nachstehenden Diagrammen (Bild 5.11 und Bild 5.14) zu entnehmen.

Biegewinkel (vgl. Bild 5.10) Einzelbalg

$$(5.3) 2\alpha_o = 2\delta_N \frac{115}{D_a}$$

Biegewinkel, drucklos 2 $\alpha_{_{o}}$ in Grad Nenn-Axialweg gesamt $2\delta_{_{N}}$ in mm Balgaußendurchmesser D_{a} in mm

Der zulässige Kaltdruck bei Winkelbewegung ist abhängig vom effektiv vorhandenen maximalen Biegewinkel α und kann, bezogen auf den Nenndruck PN, aus dem Diagramm in Bild 5.11 abgelesen werden.

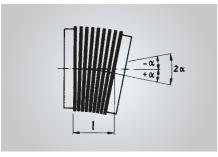


Bild 5.10 Einzelbalg, angular

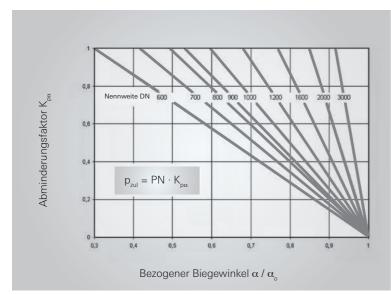


Bild 5.11 Druckabminderung des Einzelbalges bei Angularbewegung

Einzelbalg

(5.4.)
$$c_{\alpha} = c_{\delta} \cdot 2.2 \cdot 10^{-6} \cdot D_{a}^{2}$$

Federrate c_ in Nm/Grad

Axiale Federrate c, in N/mm, Balgaußendurchmesser Da in mm

Lateralweg (vgl. Bild 5.12, 5.13)

Einzelbalg (keine Druckabminderung)

$$(5.5) 2\lambda_{N} = 2\delta_{N} \frac{1}{3D_{a}}$$

Doppelbalg (Druckabminderung nach Bild 5.14 beachten!)

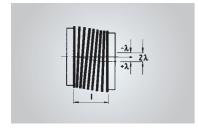
(5.6)
$$2\lambda_o = 2\delta_N \cdot \frac{2}{3D_a} \cdot \frac{l^2 + 3l^{*2}}{l + l^*}$$

Lateralweg gesamt $2\lambda_{\rm N}$ bzw. $2\lambda_{\rm o}$ in mm Axialweg des Einzelbalges $2\delta_{\rm N}$ in mm Gewellte Länge des Einzelbalges I in mm "Gelenk"- Abstand I* in mm (I* = I + I $_{\rm J}$, mit Zwischenrohrlänge I $_{\rm J}$)

Federrate c, in N/mm

Einzelbalg

$$c_{\lambda} = c_{\delta} \cdot \frac{3}{2} \left(\frac{D_a}{I} \right)^2$$


Doppelbalg

(5.8)
$$c_{\lambda} = c_{\delta} \cdot \frac{3}{4} \cdot \frac{D_{a}^{2}}{I^{2} + 3I^{*2}}$$

Federrate des Einzelbalges c, in N/mm (sonstige Werte wie vorstehend)

66 WITZENMANN 1501de/19/10/23/pdf (HYDRA) (HYDRA) 1501de/19/10/23/pdf

Der zulässige Kaltdruck bei Lateralbewegung ist abhängig vom effektiv vorhandenen maximalen Lateralweg λ , und kann aus nachstehendem Diagramm (Bild 5.14) ermittelt werden.

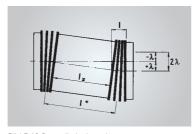


Bild 5.12 Einzelbalg, lateral

Bild 5.13 Doppelbalg, lateral

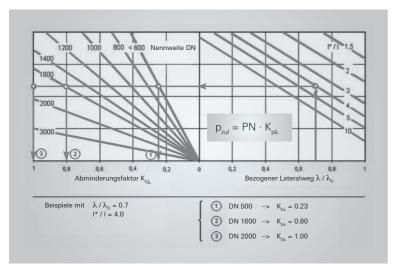


Bild 5.14 Druckabminderung des Universal-Kompensators mit zwei Bälgen bei Lateralbewegung

NENNWEITE DN

Die Nennweite des Kompensators ergibt sich aus den vorhandenen Rohrabmessungen oder Flanschanschlüssen, für die der passende Kompensator zu wählen ist

Bei Schweißenden werden in den Tabellen Standard-Wanddicken angegeben, die den Anforderungen der Nenndruck-Stufe gerecht werden. Soweit möglich, sind Normalwanddicken geschweißter Rohre nach DIN 10220 gewählt.

Als Flansche sind zunächst solche mit Abmessungen nach DIN EN 1092-1 vorgesehen. Die Blattdicken von Bördelflanschen sind dabei jeweils den im Kompensator herrschenden Beanspruchungen angepasst und teilweise abweichend von denen der genormten Schweißflansche gewählt worden. Andere Flanschabmessungen sind möglich, z.B. nach US-Norm (ASME), oder als Sonderflansche für spezielle Maschinenanschlüsse. Bei Flanschen mit gegenüber DIN EN 1092-1 verkleinerten Lochkreisen ist zu überprüfen, ob die Verschraubung von der Balgseite aus zulässig ist.

NENNDRUCK PN

Die Standard-Kompensatoren sind nach Nenndruck (PN) ausgelegt und nach PN-Stufen in Maßtabellen geordnet. (Der Nenndruck als Kennzahl entspricht dem zulässigen Betriebsüberdruck bei Raumtemperatur gerundet auf eine Nenndruckstufe PN gemäß DN EN 1333). Zusätzlich gibt es spezielle Typenreihen für Niederdruck-Kompensatoren mit PN 1. Bei höheren Temperaturen kann bekanntlich, entsprechend den dann reduzierten Festigkeitswerten der eingesetzten Werkstoffe, nur noch ein geringer Druck als der Nenndruck zugelassen werden: man muss den zulässigen Druck "abmindern".

Der Abminderungsfaktor ist definiert als:

(5.9)
$$K_{p\theta} = \frac{R_{p,\theta}}{R_{p,RT}}$$

 $R_{_{p,\theta}}$ Dehngrenze bei Auslegungstemperatur in N/mm² $R_{_{o/RT}}$ Dehngrenze bei Raumtemperatur in N/mm²

Für die Festigkeitskennwerte bei Temperatur ist über einen weiten Bereich die Dehngrenze $R_{\rm p}$ gültig, bei höheren Temperaturen kommen die Zeitstandwerte zum Tragen. Unsere Kompensatoren sind so ausgelegt, dass sich die Abminderung am Balgwerkstoff orientieren kann.

Die Wahl des geeigneten Nenndrucks geschieht über den **Kaltdruck** P_{RT} der höchstens gleich dem Nenndruck sein darf:

$$(5.10) PN \ge P_{RT} = PS/K_{p\theta}$$

PS Maximaler zulässiger Arbeitsdruck in bar

 $K_{_{p\vartheta}}$ Abminderungsfaktor (Druck) aufgrund der Arbeitstemperatur

Der **Prüfdruck** PT muss mindestens dem größeren Wert der nachstehenden Gleichungen entsprechen:

für Druckprüfung mit Wasser

(5.11)
$$P_{T} = \max \begin{cases} 1.25 \cdot PS \cdot \frac{f_{0}}{f} \\ 1.43 \cdot PS \end{cases}$$

für Druckprüfung mit Gas

$$(5.12) P_{T} = PS \cdot \frac{f_{0}}{f}$$

 ${\rm f_0}$ zulässige Spannung für Auslegungsbedingungen bei Prüftemperatur, in N/mm²

f zulässige Spannung für Auslegungsbedingungen bei Auslegungstemperatur in N/mm²

Die Kompensatoren sind so ausgelegt, dass sie einen Prüfdruck vom 1,43-fachen ihres Nenndruckes ertragen können. Ist ein höherer Prüfdruck gefordert, muss das bei der Ermittlung der PN-Stufe berücksichtigt werden.

Temperatur in °C	Abminderungs- faktor K _{p8}	Standard Werkstoffkombination			
		Balg	Schweißende	Flansch	Verankerung
20	1,00	1.4541	1.0345 (P235GH) nahtlos 1.0425 (P265GH)	1.0038 (\$235JRG2) 1.0460 (P250GH)	1.0425 (P265GH)
100	0,83				
150	0,78				
200	0,74				
250	0,71				
300	0,67		geschweißt		
350	0,64			1.5415	
400	0,62			(16Mo3)	
450	0,61		1.5415		1.5415
500	0,60		(16Mo3)		(16Mo3)
550	0,59		1.4541	1.4541	1.4541
600	0,46	1.4876	1.4876	1.4876	1.4876
650	0,32				
700	0,19				
750	0,14				
800	0,08				
850	0,06				
900	0,03				

Bild 5.15 Abminderungsfaktor für den Druck (temperaturbezogen)

Basis: Rp 1,0 - Werte für 1.4541 (kaltgewalztes Band) nach DIN EN 10028-7

Rm 100.000 - Werte für 1.4876 nach DIN EN 10095

(HYDRA®)

NENNWEGE UND NENNWINKEL

Aus den zuvor ermittelten realen Bewegungswerten sind Nennwerte zu berechnen, um damit aus den Maßtabellen ausreichend bemessene Kompensatoren bestimmen zu können. Die Nennwerte beziehen sich auf eine Lebensdauer von mindestens 1000 Voll-Lastspielen bei Raumtemperatur und voller Druckauslastung und gelten für den Standard-Balgwerkstoff 1.4541.

Ein Lastspiel ist dabei die gesamte Bewegung des Kompensators aus irgend einer Anfangsstellung zum Extremwert auf der einen Seite, zurück über den Ausgangspunkt hinaus zum Extremwert auf der anderen Seite und wieder in die Ausgangsstellung.

Die Lebensdauer wird beeinflusst durch:

- Druckauslastung
- Bewegungsgröße
- Druckpulsation

sowie durch weitere Faktoren, die in ihrer Wirkung rechnerisch nicht erfassbar oder unzulässig sind, wie:

- Thermoschock
- Korrosion
- Vorschädigung (unsachgemäßer Einbau, Beschädigung der Wellen, usw.)
- Resonanzen (z.B. strömungsinduziert)

Die Temperatur hat bis 500 °C keinen Einfluss auf die Bewegungsgröße. Bei höheren Temperaturen sollten Sie uns ansprechen.

Die nachstehenden Einflussfaktoren gelten für die Standardwerkstoffe 1.4541 (≤ 550 °C) und 1.4876 (> 550 °C). Andere Werkstoffe mit vergleichbaren Festigkeitskennwerten verhalten sich sehr ähnlich und können auf gleiche Weise abgehandelt werden. Werkstoffe mit Kennwerten, die stark von denen der genannten abweichen, sind nur näherungsweise oder gar nicht auf diese Weise erfassbar und verlangen häufig eine differenzierte Betrachtung. Sie sollten uns ansprechen, wenn Sie Sonderwerkstoffe einsetzen möchten.

Druckverhältnis P _{RT} / PN	1	0,8	0,6	0,4	0,2	0
Einflussfaktor $K_{\Delta p}$	1,00	1,03	1,07	1,10	1,13	1,15

Bild 5.17 Druckeinfluss auf die Bewegungsgröße

Lastspiele	Einflussfaktor $\mathbf{K}_{\Delta^{\mathrm{L}}}$	Lastspiele	Einflussfaktor $\mathbf{K}_{\Delta^{\mathrm{L}}}$	Lastspiele	Einflussfaktor $\mathbf{K}_{\Delta^{\mathrm{L}}}$
500	1,15	10000	0,53	5 ⋅ 10⁵	0,20
1000	1,00	20000	0,44	1 · 10 ⁶	0,17
2000	0,82	5 · 10 ⁴	0,34	2 · 10 ⁶	0,14
4000	0,68	1 · 10 ⁵	0,29	5 · 10 ⁶	0,12
7000	0,58	2 · 105	0,24	1 · 107	0,11

Bild 5.18 Einfluss der Lastspiele auf die Bewegungsgröße

Einflussfaktor allgemein

$$(5.13) K_{\Lambda} = K_{\Lambda D} \cdot K_{\Lambda I}$$

Der gesamte Einflussfaktor K, darf nicht größer sein als 1,15.

Erforderliche Bewegungsaufnahme kalt

(5.14) axial:
$$2\delta_{RT} = 2\delta / K_{\Delta} \le 2\delta_{N}$$

(5.15) lateral:
$$2\lambda_{RT} = 2\lambda / K_{\Delta} \le 2\lambda_{N}$$

(5.16) angular:
$$2\alpha_{RT} = 2\alpha / K_{\Lambda} \le 2\alpha_{NL}$$

Bewegungskollektiv

Sind von einem Kompensator Bewegungen mit unterschiedlichen Lastspielzahlen aufzunehmen, so werden zunächst die jeweiligen Kaltwerte (bezogen auf 1000 Lastspiele) bestimmt. Anschließend lässt sich daraus der rechnerische Gesamtweg des Bewegungskollektives mit guter Näherung ermitteln:

$$(5.17) \hspace{1cm} 2\delta_{\text{RTges.}} = [\hspace{1mm} \sum (2\delta_{\text{RT,i}})^4\hspace{1mm}]^{1/4}$$

Mit dem nach obigen Vorschriften errechneten Kaltweg und Nenndruck können nun die erforderlichen Kompensatoren aus dem Standardprogramm ausgesucht werden

Druckpulsationen

Dem statischen Druck überlagerten Druckpulsationen oder schwellenden Betriebsdrücke sind lebensdauerbeeinflussend. Ihre Wirkung, die rechnerisch berücksichtigt werden kann, hängt ab von der Größe der Druckschwankungen im Verhältnis zum Nenndruck und ihrer Häufigkeit. Im Allgemeinen sind Druckschwankungen nicht von nennenswertem Einfluss. Werden wegen der Größe und Häufigkeit der Druckstöße negative Auswirkungen auf die Lebensdauer befürchtet, bitten wir im konkreten Fall um Ihre Rückfrage.

Bei der Berechnung von Kompensatoren wird üblicherweise der Ausnutzungszustand (lastspielbezogen) berechnet mittels: $D = \sqrt{Ni,regd/Ni,calc} \le 1$.

WERKSTOFF

Für Standard-Kompensatoren haben wir Werkstoffkombinationen vorgesehen, die für den Großteil der Anwendungsfälle ausreichend sind. Die wichtigsten Gesichtspunkte für die Wahl des Balgwerkstoffes sind allgemein

- Verformbarkeit
- Schweißbarkeit
- Temperaturbeständigkeit
- Festigkeit
- Korrosionssicherheit

Der bei uns verwendete Standardwerkstoff 1.4541, ein nicht rostender austenitischer Stahl, erfüllt in besonderem Maß diese Voraussetzungen über einen weiten Anforderungsbereich. Für höhere Temperaturen ($\vartheta > 550$ °C) kommen hochwarmfeste oder hitzebeständige Stähle zum Einsatz, wenn sie ausreichende Verformbarkeit besitzen (z.B. 1.4876, 1.4828).

Für besonders aggressive Bedingungen sind Sonderwerkstoffe erforderlich, die mindestens die Korrosionsbeständigkeit der anschließenden Rohrleitungen haben sollen, da die relative Dünnwandigkeit der Bälge und ihre Aufgabe als hochflexibles Ausgleichselement keine Korrosionszuschläge zulässt. Im Zweifelsfall wird man für den Balg – zumindest für seine Innenlage – einen höherwertigen Werkstoff wählen. In vielen Fällen eignen sich Nickelbasislegierungen, mit denen gute Erfahrungen vorliegen.

Die Wahl des geeigneten korrosionssicheren Materials bedarf der Erfahrung des Anwenders, der mit den Besonderheiten seiner Anlage und des Betriebsmediums am besten vertraut ist. Eine Hilfestellung bei der Auswahl können die Beständigkeitstabellen in Kapitel 18 geben. Es muss auch an dieser Stelle darauf hingewiesen werden, dass Sonderwerkstoffe mit im Vergleich zu 1.4541 völlig anderen physikalischen Kennwerten (z.B. Aluminium) zu anderen Abmessungen und Leistungsdaten der Bälge führen.

Tieftemperaturen

Für tiefe Temperaturen ist bis ϑ = -10 °C die Standardausführung einzusetzen, ohne dass eine Abminderung erforderlich wäre.

Bei tiefen Temperaturen sollten Tieftemperaturstähle für die ferritischen Teile gewählt werden. Bild 5.16 gibt geeignete, nach EN 13445 bzw. EN 14917-Regelwerk zugelassene Werkstoffe an, die wieder eine volle Auslastung des Kompensators erlauben. Für Tiefsttemperaturen bis $\vartheta = -273$ °C bietet sich eine Ausführung komplett aus dem austenitischen Werkstoff 1.4541 an.

Temperatur in C°	Balg	Rohr	Verankerung
-20	1.4541	P235GH	P265GH
-40		P355NL1	P355NL1
-273		1.4541	1.4541

Bild 5.16 Werkstoffe für Tieftemperatureinsatz EN 13445-2

LEITROHR

Leitrohre werden innen als Balgschutz eingesetzt, wenn mit Ablagerungen oder Abrasion gerechnet werden muss oder wenn hohe Strömungsgeschwindigkeiten die Balgwellen zu Schwingungen anregen können.

Grenzwerte für Strömungsgeschwindigkeiten, die noch ohne Leitrohr zugelassen werden können, gibt das Diagramm in Bild 5.19. Dabei ist schon eine ungünstige Anströmung der Balgwellen angenommen.

Das Leitohr kann gleichzeitig inneres Führungsrohr sein (bei speziellen Ausführungen) und ist in diesem Fall unverzichtbar. Zudem kann es gleichzeitig als Halterung für eine Innenausmauerung dienen und verlangt dann eine besondere Ausbildung. Wenn Leitrohre einerseits erforderlich sind, andererseits aber eine laterale oder angulare Bewegung nicht behindern dürfen, kommen konische oder abgesetzte Leitrohre zum Einsatz (Bild 5.20).

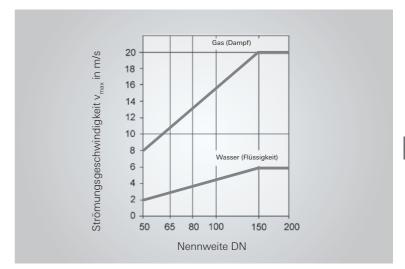


Bild 5.19 Grenzwerte für Leitrohreinsatz

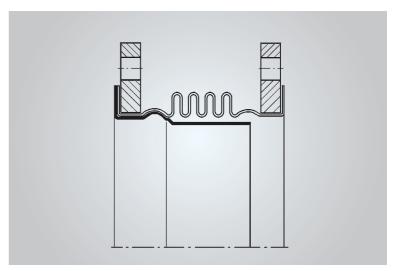
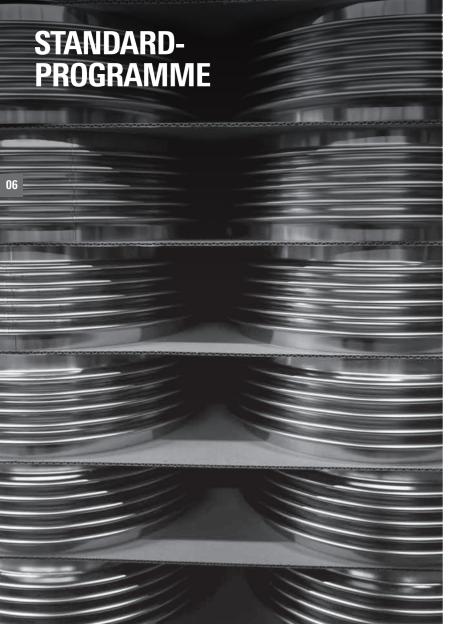



Bild 5.20 Axial-Kompensator mit abgesetztem Leitrohr für seitliche Bewegung

Allgemeine Hinweise

Im vorliegenden Handbuch werden Kompensatoren behandelt, wie sie für den Rohrleitungs-, Anlagen- und Apparatebau benötigt werden. Entsprechend der üblichen Fahrweise thermischer Anlagen sind die Kompensatoren für 1000 Lastspiele ausgelegt, was einem 20-jährigen Betrieb bei wöchentlichem An- und Abfahren entsprechen würde. Andere Auslegungen sind ebenfalls möglich. Die aufgeführten HYDRA Kompensatoren decken als Teil unseres breiten Herstellungsprogramms beweglicher metallischer Elemente den wesentlichen Bedarf der industriellen Anwendung ab:

Nennweiten DN 15 – 3000 Nenndrücke PN 1 – 63

Kompensatoren größerer Abmessungen bis 12 m Durchmesser und für höhere Drücke sind bei Bedarf lieferhar

Die Standard-Kompensatoren sind nach Bauarten, wie Axial-, Angular- und Lateral-Kompensatoren unterschieden und sind nach Typenreihen getrennt aufgelistet, wobei die Typenreihe neben der Bauart noch weitere Merkmale, wie Anschlussart und Besonderheiten enthält. Die einzelnen Typenreihen sind nach Nenndruckstufe, Nennweite und Bewegungsgröße geordnet. Die Ausführung der Standard-Kompensatoren, von der Varianten möglich sind, ist zunächst festgelegt in Bezug auf Anschlüsse und Werkstoffe:

Anschlüsse

Schweißenden nach ISO Flansche nach EN 1092-1

Anschlussteile nach anderen Standards (z.B. ASME) mit geringen Änderungen der Kompensatoreigenschaften möglich.

Werkstoffe

Gemäß Beschreibung der Einzeltypen

Axial-/ Universal-Kompensatoren für Niederdruck (Abgas)

- Mit Flanschen
- Mit Schweißenden

Typenreihe

ABN/AFN (ehemals ABG/AFG) UBN/UFN (ehemals ABG/AFG) ARN/URN (ehemals ABG/AFG)

Nennweiten

DN50 - DN3000

Druckstufen

PN1

Besondere Eigenschaften/Anwendungsschwerpunkte

Unverankerte Kompensatoren als preisgünstige Ausführung für Abgasleitungen mit kleinen Federraten und großer Bewegungsaufnahme.

Axial-/ Universal-Kompensatoren

- Mit Flanschen
- Mit Schweißenden

Typenreihe

ABN/AFN UBN/UFN ARN/URN

Nennweiten

DN50 - DN2000

Druckstufen

PN2.5 - PN40

Besondere Eigenschaften/Anwendungsschwerpunkte

Unverankerte Kompensatoren für den Rohrleitungs- und Anlagenbau mit kleinen Federraten und großer Bewegungsaufnahme.

Tai Modorardok (Abguo)

Angular-Kompensatoren als Einfach-/ Kardangelenk

- Mit drehbaren Flanschen
- Mit glatten Festflanschen

Typenreihe

WBN/WBK WFN/WFK

Nennweiten

DN50 - DN800

Druckstufen

PN6 - PN25

Besondere Eigenschaften/Anwendungsschwerpunkte

Große Biegewinkel, kurze Baulängen für den Einsatz in Chemieanlagen.

Angular-Kompensatoren als Einfach-/ Kardangelenk

■ Mit Schweißenden

Typenreihe

WRN/WRK

Nennweiten

DN50 - DN800

Druckstufen


PN2.5 - PN63

Besondere Eigenschaften/Anwendungsschwerpunkte

Große Biegewinkel, kurze Baulängen für den Einsatz im Rohrleitungsund Anlagenbau.

Lateral-Kompensator für allseitige Bewegung (Kreisebene)

- Mit Bördelflanschen
- Mit glatten Festflanschen

Typenreihe

LBR LFR

Nennweiten

DN50 - DN500

Druckstufen

PN6 - PN25

Besondere Eigenschaften/Anwendungsschwerpunkte

Allseitig in Kreisebene beweglich, für den Einsatz im Rohrleitungsund Anlagenbau, als Maschinenanschluss.

Lateral-Kompensatoren einseitig/allseitig beweglich

■ Mit Schweißenden

Typenreihe

LRR

LRN/LRK

Nennweiten

DN50 - DN2000

Druckstufen

PN6 - PN63

Besondere Eigenschaften/Anwendungsschwerpunkte

Kompakte Ausführung, kleine Federraten, für den Einsatz im Rohrleitungsund Anlagenbau.

Schallschutzkompensatoren

■ Mit Zuganker und -Bördelflanschen

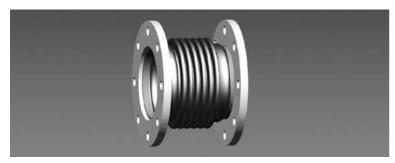
Typenreihe

LBS

Nennweiten

DN50 - DN400

Druckstufen


PN6 - PN25

Besondere Eigenschaften/Anwendungsschwerpunkte

Schallisolierende Ausführung für den Einsatz an schwingenden Aggregaten. Pumpen.

06

AXIAL-KOMPENSATOREN FÜR NIEDERDRUCK (ABGAS) MIT FLANSCHEN TYP ABN, AFN

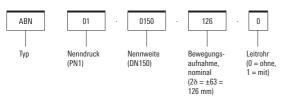
Typenbezeichnung

Die Typenbezeichnung besteht aus 2 Teilen

- 1. Typenreihe, definiert durch 3 Buchstaben
- 2. Nenngröße, definiert durch 10 Ziffern

Beispiel

Typ ABN: HYDRA Abgas-Kompensator mit drehbaren Flanschen Typ AFN: HYDRA Abgas-Kompensator mit glatten Festflanschen


Standardausführung/Werkstoffe

Balg vielwandig aus 1.4541

Flansch aus S235JRG2 (1.0038) oder aus P250GH (1.0460)

Betriebstemperatur: bis 550 °C

Typenbezeichnung (beispielhaft)

Bestelltext

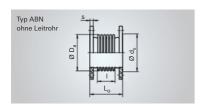
Bei Bestellung bitte angeben:

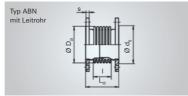
Bei Standardausführung

■ Typenbezeichnung oder Bestellnummer

Mit Werkstoffvarianten

- Typenbezeichnung
- Angabe der Werkstoffe

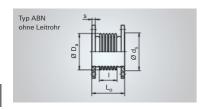

Die Kompensatoren für Niederdruck (Abgas) sind für den drucklosen Einsatz (PS < 0.5 barü) konzipiert.

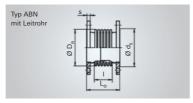

Für diesen Betriebszustand ist die Druckgeräterichtlinie (DGRL) nicht anzuwenden.

Hinweis

Wir passen den Kompensator Ihren Anforderungen an, wenn Sie uns die vom Standard abweichenden Maße angeben. Auf Wunsch können Flansche auch mit anderen Bohrbildern / Flanschblattdicken geliefert werden. Hierbei ändert sich ggf. die angegebene Baulänge L0.

 WITZENMANN
 1501de/19/10/23/pdf
 (HYDRA)
 (HYDRA)
 1501de/19/10/23/pdf
 WITZENMANN
 8

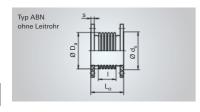

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Bau- länge		richt a.		Flansch 2)	
	aufnahme 1) nominal	ABN 01	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Bördel- durch- messer	Blatt- dicke
DN	2 δ _N	-	-	-	L _o	G	G	PN	d ₅	s
_	mm	-	-	-	mm	kg	kg	-	mm	mm
50	20	.0050.020.0	419285	419411	117	3,3	3,4	6	90	16
50	56	.0050.056.0	419286	419412	198	3,6	3,8	6	90	16
50	80	.0050.080.0	419287	419413	252	3,8	4,2	6	90	16
65	23	.0065.023.0	419289	419414	117	4,3	4,4	6	107	16
65	64	.0065.064.0	419290	419415	198	4,6	5	6	107	16
65	92	.0065.092.0	419291	419416	252	4,8	5	6	107	16
80	37	.0080.037.0	419292	419417	146	7	7	6	122	18
80	69	.0080.069.0	419293	419418	206	7	7	6	122	18
80	101	.0080.101.0	419294	419419	266	7	8	6	122	18
100	40	.0100.040.0	419295	419420	142	7	8	6	147	18
100	79	.0100.079.0	419296	419421	208	8	8	6	147	18
100	112	.0100.112.0	419297	419422	263	8	9	6	147	18
125	63	.0125.063.0	419298	419423	181	10	10	6	178	20
125	117	.0125.117.0	419299	419424	259	10	11	6	178	20
125	180	.0125.180.0	419300	419425	350	11	12	6	178	20
150	54	.0150.054.0	419301	419426	168	11	11	6	202	20
150	126	.0150.126.0	419302	419427	272	12	13	6	202	20
150	180	.0150.180.0	419303	419428	350	12	14	6	202	20
200	70	.0200.070.0	419304	419429	199	15	17	6	258	22
200	120	.0200.120.0	419305	419430	274	16	18	6	258	22
200	200	.0200.200.0	419306	419431	394	17	20	6	258	22

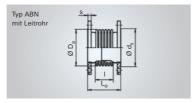

	Balg		Bewegungs non	aufnahme 1) ninal	allseitige Schwin-		Federrate		Eigenfrequenz des Balges		
Außen- durch- messer	ge- wellte Länge	wirksamer Quer- schnitt	angular	lateral	gungen	axial	angular	lateral	axial	radial	
D _a	ı	Α	2 α _N	2λ _N	â	Cδ	Cα	C _λ	ω	$\omega_{\rm r}$	
mm	mm	cm ²	grad	mm	mm	N/mm	Nm/grd	N/mm	Hz	Hz	
89	45	46	30	3,9	0,3	104	1,3	451	420	1800	
89	126	46	50	31	1	37	0,5	20	150	230	
89	180	46	50	63	1	26	0,3	7	105	110	
107	45	68,7	28	3,7	0,3	101	1,9	654	350	1840	
107	126	68,7	50	29	1	36	0,7	30	125	235	
107	180	68,7	50	59	1	25	0,5	10	90	115	
121	70	89,1	39	8,1	0,5	67	1,7	233	220	840	
121	130	89,1	50	28	1	36	0,9	36	165	340	
121	190	89,1	50	60	1	25	0,6	12	80	115	
148	66	137	34	6,6	0,5	72	2,8	432	210	1050	
148	132	137	50	26	1	36	1,4	54	90	220	
148	187	137	50	53	1	26	1	19	60	110	
174	91	187	45	12	0,5	41	2,1	177	120	520	
174	169	187	50	43	1	22	1,1	28	70	150	
174	260	187	50	101	1	14	0,7	7,4	40	65	
203	78	264	33	7,7	0,7	56	4,1	465	140	830	
203	182	264	50	42	1	24	1,8	37	60	150	
203	260	264	50	85	1	17	1,2	13	40	75	
255	105	432	33	10	1	53	6,4	397	110	600	
255	180	432	50	31	1	31	3,7	79	60	210	
255	300	432	50	85	1	19	2,3	17	40	75	

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht liberschreiten.

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP ABN 01... PN 1

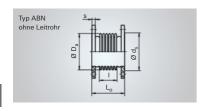

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Bau- länge		richt a.		Flansch ²	
	aufnahme 1) nominal	ABN 01	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Bördel- durch- messer	Blatt- dicke
DN	2 δ _N	-	-	-	L _o	G	G	PN	d ₅	s
_	mm	-	-	-	mm	kg	kg	-	mm	mm
250	72	.0250.072.0	419307	419432	210	20	21	6	312	24
250	132	.0250.132.0	419308	419433	295	21	23	6	312	24
250	204	.0250.204.0	419310	419434	397	22	25	6	312	24
300	56	.0300.056.0	419309	419435	184	26	27	6	365	24
300	140	.0300.140.0	419311	419436	298	27	30	6	365	24
300	210	.0300.210.0	419312	419437	393	29	32	6	365	24
350	60	.0350.060.0	419313	419449	192	36	37	6	410	26
350	120	.0350.120.0	419314	419450	272	37	40	6	410	26
350	210	.0350.210.0	419315	419451	392	39	43	6	410	26
400	65	.0400.065.0	419316	419452	232	45	47	6	465	28
400	104	.0400.104.0	419318	419453	295	47	50	6	465	28
400	195	.0400.195.0	419319	419463	442	52	57	6	465	28
450	56	.0450.056.0	419320	419464	219	55	57	6	520	30
450	112	.0450.112.0	419321	419465	307	58	62	6	520	30
450	196	.0450.196.0	419322	419466	439	63	69	6	520	30
500	68	.0500.068.0	419323	419467	223	59	62	6	570	30
500	119	.0500.119.0	419324	419468	292	62	66	6	570	30
500	221	.0500.221.0	419325	419469	430	68	74	6	570	30
600	76	.0600.076.0	419326	419470	239	78	81	6	670	32
600	133	.0600.133.0	419327	419471	317	82	87	6	670	32
600	228	.0600.228.0	419328	419472	447	88	96	6	670	32

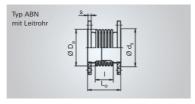

	Balg			saufnahme ¹⁾ ninal	allseitige Schwin-		Federrate			requenz Balges
Außen- durch- messer	ge- wellte Länge	wirksamer Quer- schnitt	angular	lateral	gungen	axial	angular	lateral	axial	radial
D _a	- 1	Α	2 α _N	2λ _N	â	Cδ	C _{\alpha}	C _λ	ω _a	ω _r
mm	mm	cm ²	grad	mm	mm	N/mm	Nm/grd	N/mm	Hz	Hz
312	102	661	28	8,4	0,7	62	11	752	110	780
312	187	661	47	28	1	34	6,2	123	60	230
312	289	661	50	68	1	22	4	33	40	100
365	76	916	18	4,2	0,4	91	23	2756	140	1610
365	190	916	43	26	1	36	9,2	174	60	260
365	285	916	50	58	1	24	6,1	52	40	115
400	80	1104	18	4,3	0,4	82	25	2703	120	1490
400	160	1104	34	17	1	41	13	338	65	375
400	280	1104	50	52	1	23	7,4	62	35	120
458	105	1445	17	5,3	0,5	211	85	5283	120	1260
458	168	1445	27	14	1	132	53	1291	80	500
458	315	1445	45	48	1	70	29	195	40	140
513	88	1825	13	3,4	0,3	243	123	10935	130	1850
513	176	1825	32	17	1	121	62	1361	70	460
513	308	1825	41	42	1	69	35	253	40	150
569	92	2252	14	3,9	0,3	214	135	10875	115	1690
569	161	2252	24	12	1	122	77	2025	70	550
569	299	2252	42	41	1	66	41	318	35	160
674	104	3202	14	4,1	0,3	214	191	12099	100	1570
674	182	3202	23	13	1	122	109	2252	60	510
674	312	3202	36	37	1	71	64	446	35	175

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überscheiten.

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP ABN 01... PN 1


Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Bau- länge		richt a.		Flansch ²	
	aufnahme 1) nominal	ABN 01	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Bördel- durch- messer	Blatt- dicke
DN	2 δ _N	-	-	-	L _o	G	G	PN	d ₅	s
_	mm	-	-	-	mm	kg	kg	-	mm	mm
700	80	.0700.080.0	419329	419473	218	63	68	6	775	20
700	120	.0700.120.0	419330	419474	274	66	72	6	775	20
700	220	.0700.220.0	419331	419475	414	74	83	6	775	20
800	84	.0800.084.0	419332	419476	230	78	83	6	880	20
800	126	.0800.126.0	419333	419477	288	81	88	6	880	20
800	231	.0800.231.0	419334	419478	433	90	101	6	880	20
900	84	.0900.084.0	419335	419479	234	82	88	6	980	20
900	126	.0900.126.0	419336	419481	294	87	95	6	980	20
900	210	.0900.210.0	419337	419482	414	95	107	6	980	20
1000	72	.1000.072.0	419338	419483	220	87	93	6	1080	20
1000	144	.1000.144.0	419339	419484	316	94	104	6	1080	20
1000	240	.1000.240.0	419340	419485	444	104	118	6	1080	20
1200	72	.1200.072.0	419341	419486	225	108	123	2	1280	20
1200	120	.1200.120.0	419342	419487	287	114	134	2	1280	20
1200	216	.1200.216.0	419343	419488	411	126	156	2	1280	20
1400	48	.1400.048.0	419344	419490	136	125	138	2	1466	20
1400	108	.1400.108.0	419345	419491	266	137	162	2	1466	20
1400	180	.1400.180.0	419346	419492	422	151	191	2	1466	20
1600	48	.1600.048.0	419347	419493	136	155	170	2	1666	20
1600	108	.1600.108.0	419385	419494	266	169	198	2	1666	20
1600	180	.1600.180.0	419386	419495	422	185	231	2	1666	20

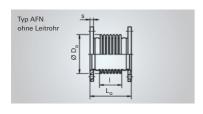

	Balg		Bewegungs	aufnahme 1)	allseitige Schwin-		Federrate			equenz
Außen- durch- messer	ge- wellte Länge	wirksamer Quer- schnitt	angular	lateral	gungen	axial	angular	lateral	axial	radial
D _a	- 1	Α	2 α _N	2λ _N	â	Cδ	Cα	C _λ	ω	$\omega_{\rm r}$
mm	mm	cm ²	grad	mm	mm	N/mm	Nm/grd	N/mm	Hz	Hz
780	112	4324	12	4	0,3	203	244	13365	90	1480
780	168	4324	18	9,1	0,8	135	162	3950	60	660
780	308	4324	30	30	1	74	89	644	30	195
882	116	5588	11	3,9	0,3	220	341	17449	85	1570
882	174	5588	16	8,7	0,8	147	228	5182	60	700
882	319	5588	28	29	1	80	124	839	30	210
992	120	7133	9,9	3,5	0,2	237	472	22421	80	1650
992	180	7133	15	7,9	0,7	158	313	6643	60	730
992	300	7133	23	22	1	95	188	1438	30	260
1095	96	8750	7,7	2,2	0,2	335	814	60745	105	2940
1095	192	8750	15	8,7	0,7	167	408	7570	50	740
1095	320	8750	23	24	1	100	245	1632	30	265
1295	93	12331	6,5	1,8	0,1	330	1134	89855	95	3210
1295	155	12331	11	4,9	0,4	198	678	19409	60	1160
1295	279	12331	18	16	1	110	377	3328	30	360
1456	104	16016	3,8	1,2	0,1	911	4053	257632	150	5320
1456	234	16016	8,4	5,9	0,5	405	1802	22624	70	1050
1456	390	16016	13	16	1	243	1081	4887	40	380
1656	104	20816	3,4	1	0,1	1035	5990	380429	150	6040
1656	234	20816	7,4	5,2	0,5	460	2660	33398	70	1200
1656	390	20816	12	14	1	276	1596	7214	40	430

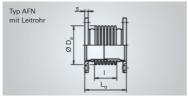
¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht liberschreiten.

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP ABN 01... PN 1

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Bau- länge		richt a.		Flansch ²	
	aufnahme 1) nominal	ABN 01	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Bördel- durch- messer	Blatt- dicke
DN	2 δ _N	-	-	-	L _o	G	G	PN	d ₅	s
_	mm	-	-	-	mm	kg	kg	-	mm	mm
1800	48	.1800.048.0	419387	419496	136	174	190	2	1866	20
1800	108	.1800.108.0	419388	419498	266	189	222	2	1866	20
1800	180	.1800.180.0	419389	419499	422	208	259	2	1866	20
2000	48	.2000.048.0	419390	419500	136	192	210	2	2066	20
2000	108	.2000.108.0	419391	419501	266	209	245	2	2066	20
2000	180	.2000.180.0	419392	419502	422	230	286	2	2066	20
2200	48	.2200.048.0	419393	419503	136	226	246	2	2266	20
2200	108	.2200.108.0	419394	419505	266	245	285	2	2266	20
2200	180	.2200.180.0	419396	419506	422	267	332	2	2266	20
2400	48	.2400.048.0	419397	419507	136	246	268	2	2466	20
2400	108	.2400.108.0	419398	419508	266	266	310	2	2466	20
2400	180	.2400.180.0	419399	419509	422	291	361	2	2466	20
2600	48	.2600.048.0	419400	419510	136	265	290	2	2666	20
2600	108	.2600.108.0	419401	419511	266	288	335	2	2666	20
2600	180	.2600.180.0	419402	419513	422	315	391	2	2666	20
2800	48	.2800.048.0	419403	419514	136	319	345	2	2866	20
2800	108	.2800.108.0	419404	419516	266	343	395	2	2866	20
2800	180	.2800.180.0	419405	419518	422	372	454	2	2866	20
3000	48	.3000.048.0	419406	419519	136	341	369	2	3066	20
3000	108	.3000.108.0	419407	419520	266	367	422	2	3066	20
3000	180	.3000.180.0	419408	419521	422	398	486	2	3066	20


	Balg			aufnahme ¹⁾ ninal	allseitige Schwin-		Federrat	e		equenz lalges
Außen- durch- messer	ge- wellte Länge	wirksamer Quer- schnitt	angular	lateral	gungen	axial	angular	lateral	axial	radial
D _a	I	Α	2 α _N	2λ _N	â	Cδ	C _{\alpha}	C _λ	ωa	$\omega_{\rm r}$
mm	mm	cm ²	grad	mm	mm	N/mm	Nm/grd	N/mm	Hz	Hz
1856	104	26245	3	0,9		1158	8449	536643	150	6760
1856	234	26245	6,6	4,6	0,4	515	3754	47143	70	1340
1856	390	26245	11	13	1	309	2253	10183	40	480
2056	104	32302	2,7	0,8		1281	11503	730650	150	7480
2056	234	32302	6	4,2	0,4	569	5114	64107	70	1480
2056	390	32302	9,6	12	1	342	3069	13872	40	530
2256	104	38987	2,5	0,7		1403	15205	965857	150	8200
2256	234	38987	5,4	3,8	0,3	623	6758	84718	70	1620
2256	390	38987	8,8	11	1	374	4050	18309	40	580
2456	104	46301	2,3	0,7		1524	19613	1245968	150	8900
2456	234	46301	5	3,5	0,3	677	8720	109332	70	1760
2456	390	46301	8,1	9,6	1	406	5235	23604	40	630
2656	104	54243	2,1	0,6		1646	24816	1576541	150	9620
2656	234	54243	4,6	3,2	0,3	731	11029	138302	70	1900
2656	390	54243	7,5	8,9	0,8	439	6615	29900	40	680
2856	104	62813	1,9	0,6		1767	30848	1959837	150	10330
2856	234	62813	4,3	3	0,2	785	13714	171984	65	2040
2856	390	62813	7	8,3	0,8	471	8218	37149	40	740
3056	104	72011	1,8	0,5		1888	37786	2400702	150	11050
3056	234	72011	4	2,8	0,2	839	16803	210733	65	2180
3056	390	72011	6,5	7,7	0,7	504	10082	45573	40	790

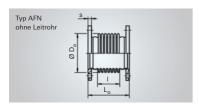

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überscheiden

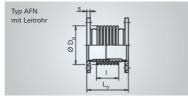
²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

AXIAL-KOMPENSATOREN FÜR NIEDERDRUCK MIT GLATTEN FESTFLANSCHEN

TYP AFN 01... PN 1

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Baulänge		vicht a.	Flan	sch ²
	aufnahme 1) nominal	AFN 01	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Blattdicke
DN	2 δ _N	-	-	-	L _o	G	G	PN	s
_	mm	-	-	-	mm	kg	kg	-	mm
50	20	.0050.020.0	420180	420272	129	3,2	3,4	6	16
50	56	.0050.056.0	420181	420273	210	3,5	3,9	6	16
50	80	.0050.080.0	420182	421598	264	3,6	4	6	16
65	23	.0065.023.0	420183	421599	129	4,1	4,3	6	16
65	64	.0065.064.0	420184	421600	210	4,4	4,8	6	16
65	92	.0065.092.0	420185	421601	264	4,7	5	6	16
80	37	.0080.037.0	420186	421602	156	6	7	6	18
80	69	.0080.069.0	420187	421603	216	7	7	6	18
80	101	.0080.101.0	420188	421604	276	7	8	6	18
100	40	.0100.040.0	420189	421605	152	7	8	6	18
100	79	.0100.079.0	420190	421606	218	8	8	6	18
100	112	.0100.112.0	420191	421607	273	8	9	6	18
125	63	.0125.063.0	420192	421608	189	9	10	6	20
125	117	.0125.117.0	420193	421609	267	10	11	6	20
125	180	.0125.180.0	420194	421610	358	11	12	6	20
150	54	.0150.054.0	420195	421611	176	11	11	6	20
150	126	.0150.126.0	420196	421612	280	11	13	6	20
150	180	.0150.180.0	420197	421613	358	12	14	6	20
200	70	.0200.070.0	420198	421614	205	15	16	6	22
200	120	.0200.120.0	420199	421615	280	16	18	6	22
200	200	.0200.200.0	420200	421617	400	17	20	6	22


	Balg			saufnahme ¹⁾ ninal	allseitige Schwin-		Federrate			requenz Balges
Außen- durch- messer	ge- wellte Länge	wirksamer Quer- schnitt	angular	lateral	gungen	axial	angular	lateral	axial	radial
D _a	- 1	Α	2 α _N	2λ _N	â	Cδ	Cα	C _λ	ω _a	$\omega_{\rm r}$
mm	mm	cm ²	grad	mm	mm	N/mm	Nm/grd	N/mm	Hz	Hz
89	45	46	30	3,9	0,3	104	1,3	451	420	1800
89	126	46	50	31	1	37	0,5	20	150	230
89	180	46	50	63	1	26	0,3	7	105	110
107	45	68,7	28	3,7	0,3	101	1,9	654	350	1840
107	126	68,7	50	29	1	36	0,7	30	125	235
107	180	68,7	50	59	1	25	0,5	10	90	115
121	70	89,1	39	8,1	0,5	67	1,7	233	220	840
121	130	89,1	50	28	1	36	0,9	36	165	340
121	190	89,1	50	60	1	25	0,6	12	80	115
148	66	137	34	6,6	0,5	72	2,8	432	210	1050
148	132	137	50	26	1	36	1,4	54	90	220
148	187	137	50	53	1	26	1	19	60	110
174	91	187	44	12	0,5	41	2,1	177	120	520
174	169	187	50	43	1	22	1,1	28	70	150
174	260	187	50	101	1	14	0,7	7,4	40	65
203	78	264	32	7,7	0,7	56	4,1	465	140	830
203	182	264	50	42	1	24	1,8	37	60	150
203	260	264	50	85	1	17	1,2	13	40	75
255	105	432	33	10	1	53	6,4	397	110	600
255	180	432	50	31	1	31	3,7	79	60	210
255	300	432	50	85	1	19	2,3	17	40	75

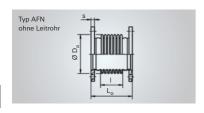

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überscheiden

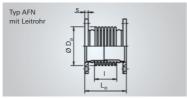
²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

AXIAL-KOMPENSATOREN FÜR NIEDERDRUCK MIT GLATTEN FESTFLANSCHEN

TYP AFN 01... PN 1

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Baulänge	Gew	richt a.	Flan	sch ²
	aufnahme 1) nominal	AFN 01	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Blattdicke
DN	2 δ _N	-	-	-	L _o	G	G	PN	s
_	mm	-	-	-	mm	kg	kg	-	mm
250	72	.0250.072.0	420201	421618	214	20	21	6	24
250	132	.0250.132.0	420202	421619	299	21	23	6	24
250	204	.0250.204.0	420203	421620	401	22	25	6	24
300	56	.0300.056.0	420204	421621	188	25	28	6	24
300	140	.0300.140.0	420205	421622	302	27	31	6	24
300	210	.0300.210.0	420206	421623	397	28	34	6	24
350	60	.0350.060.0	420207	421624	194	35	38	6	26
350	120	.0350.120.0	420208	421625	274	37	41	6	26
350	210	.0350.210.0	420209	421626	394	39	45	6	26
400	65	.0400.065.0	420210	421627	230	44	48	6	28
400	104	.0400.104.0	420211	421628	293	46	51	6	28
400	195	.0400.195.0	420212	421629	440	51	59	6	28
450	56	.0450.056.0	420213	421630	217	54	58	6	30
450	112	.0450.112.0	420214	421631	305	57	63	6	30
450	196	.0450.196.0	420215	421632	437	62	71	6	30
500	68	.0500.068.0	420216	421633	221	58	63	6	30
500	119	.0500.119.0	420217	421634	290	61	67	6	30
500	221	.0500.221.0	420218	421635	428	67	77	6	30
600	76	.0600.076.0	420219	421636	237	76	82	6	32
600	133	.0600.133.0	420220	421637	315	80	88	6	32
600	228	.0600.228.0	420223	421638	445	87	98	6	32


	Balg			saufnahme ¹⁾ ninal	allseitige Schwin-		Federrate			requenz Balges
Außen- durch- messer	ge- wellte Länge	wirksamer Quer- schnitt	angular	lateral	gungen	axial	angular	lateral	axial	radial
D _a	- 1	Α	2 α _N	2λ _N	â	Cδ	Cα	C _λ	ω	ω _r
mm	mm	cm ²	grad	mm	mm	N/mm	Nm/grd	N/mm	Hz	Hz
312	102	661	27	8,4	0,7	62	11	752	110	780
312	187	661	45	28	1	34	6,2	123	60	230
312	289	661	50	68	1	22	4	33	40	100
365	76	916	18	4,2	0,4	91	23	2756	140	1610
365	190	916	41	26	1	36	9,2	174	60	260
365	285	916	50	58	1	24	6,1	52	40	115
400	80	1104	18	4,3	0,4	82	25	2703	120	1490
400	160	1104	33	17	1	41	13	338	65	375
400	280	1104	46	52	1	23	7,4	62	35	120
458	105	1445	17	5,3	0,5	211	85	5283	120	1260
458	168	1445	27	14	1	132	53	1291	80	500
458	315	1445	46	48	1	70	29	195	40	140
513	88	1825	13	3,4	0,3	243	123	10935	130	1850
513	176	1825	26	14	1	121	62	1361	70	460
513	308	1825	41	42	1	69	35	253	40	150
569	92	2252	14	3,9	0,3	214	135	10875	115	1690
569	161	2252	24	12	1	122	77	2025	70	550
569	299	2252	42	41	1	66	41	318	35	160
674	104	3202	14	4,1	0,3	214	191	12099	100	1570
674	182	3202	23	13	1	122	109	2252	60	510
674	312	3202	36	37	1	71	64	446	35	175


¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überscheiden

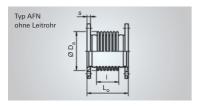
²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

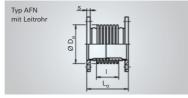
AXIAL-KOMPENSATOREN FÜR NIEDERDRUCK MIT GLATTEN FESTFLANSCHEN

TYP AFN 01... PN 1

Nenn- weite	Axiale Bewegungs-	Тур	Bestellr Standarda	nummer usführung	Baulänge		richt a.	Flan	sch ²
	aufnahme 1) nominal	AFN 01	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Blattdicke
DN	2 δ _N	-	-	-	L,	G	G	PN	s
_	mm	-	-	-	mm	kg	kg	-	mm
700	80	.0700.080.0	420225	421639	230	62	69	6	20
700	120	.0700.120.0	420227	421640	286	65	74	6	20
700	220	.0700.220.0	420228	421641	426	73	87	6	20
800	84	.0800.084.0	420229	421642	244	76	85	6	20
800	126	.0800.126.0	420230	421643	302	79	90	6	20
800	231	.0800.231.0	420231	421644	447	89	105	6	20
900	84	.0900.084.0	420232	421645	248	80	91	6	20
900	126	.0900.126.0	420233	421646	308	85	98	6	20
900	210	.0900.210.0	420234	421647	428	93	112	6	20
1000	72	.1000.072.0	420235	421648	234	85	96	6	20
1000	144	.1000.144.0	420236	421649	330	92	108	6	20
1000	240	.1000.240.0	420237	421650	458	102	124	6	20
1200	72	.1200.072.0	420238	421651	241	105	123	2	20
1200	120	.1200.120.0	420239	421652	303	111	134	2	20
1200	216	.1200.216.0	420240	421653	427	123	156	2	20
1400	48	.1400.048.0	420241	421654	152	122	134	2	20
1400	108	.1400.108.0	420243	421655	282	134	158	2	20
1400	180	.1400.180.0	420244	421656	438	149	186	2	20
1600	48	.1600.048.0	420246	421657	152	152	166	2	20
1600	108	.1600.108.0	420247	421658	282	166	193	2	20
1600	180	.1600.180.0	420248	421659	438	182	225	2	20

	Balg		Bewegungs	aufnahme 1)	allseitige Schwin-		Federrate			equenz alges
Außen- durch- messer	ge- wellte Länge	wirksamer Quer- schnitt	angular	lateral	gungen	axial	angular	lateral	axial	radial
D _a	- 1	Α	2 α _N	2λ _N	â	Cδ	C _{\alpha}	C _λ	ωa	$\omega_{\rm r}$
mm	mm	cm ²	grad	mm	mm	N/mm	Nm/grd	N/mm	Hz	Hz
780	112	4324	12	4	0,3	203	244	13365	90	1480
780	168	4324	18	9,1	0,8	135	162	3950	60	660
780	308	4324	30	30	1	74	89	644	30	195
882	116	5588	11	3,9	0,3	220	341	17449	85	1570
882	174	5588	17	8,7	0,8	147	228	5182	60	700
882	319	5588	28	29	1	80	124	839	30	210
992	120	7133	10	3,5	0,2	237	472	22421	80	1650
992	180	7133	15	7,9	0,7	158	313	6643	60	730
992	300	7133	23	22	1	95	188	1438	30	260
1095	96	8750	7,7	2,2	0,2	335	814	60745	105	2940
1095	192	8750	15	8,7	0,7	167	408	7570	50	740
1095	320	8750	24	24	1	100	245	1632	30	265
1295	93	12331	6,5	1,8	0,1	330	1134	89855	95	3210
1295	155	12331	11	4,9	0,4	198	678	19409	60	1160
1295	279	12331	18	16	1	110	377	3328	30	360
1456	104	16016	3,9	1,2	0,1	911	4053	257632	150	5320
1456	234	16016	8,5	5,9	0,5	405	1802	22624	70	1050
1456	390	16016	14	16	1	243	1081	4887	40	380
1656	104	20816	3,4	1	0,1	1035	5990	380429	150	6040
1656	234	20816	7,5	5,2	0,5	460	2660	33398	70	1200
1656	390	20816	12	14	1	276	1596	7214	40	430


¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht liberschreiten.


²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP AFN 01...

PN 1

AXIAL-KOMPENSATOREN FÜR NIEDERDRUCK MIT GLATTEN FESTFLANSCHEN

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Baulänge	Gew c	vicht a.	Flansch ²	
	aufnahme 1) nominal	AFN 01	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Blattdicke
DN	2 δ _N	-	-	-	L,	G	G	PN	s
_	mm	-	-	-	mm	kg	kg	-	mm
1800	48	.1800.048.0	420250	421660	152	170	186	2	20
1800	108	.1800.108.0	420251	421661	282	185	216	2	20
1800	180	.1800.180.0	420252	421662	438	204	252	2	20
2000	48	.2000.048.0	420253	421663	152	188	206	2	20
2000	108	.2000.108.0	420255	421664	282	205	239	2	20
2000	180	.2000.180.0	420256	421665	438	226	279	2	20
2200	48	.2200.048.0	420257	421666	152	221	241	2	20
2200	108	.2200.108.0	420258	421667	282	240	279	2	20
2200	180	.2200.180.0	420259	421668	438	263	323	2	20
2400	48	.2400.048.0	420260	421669	152	241	262	2	20
2400	108	.2400.108.0	420261	421670	282	262	304	2	20
2400	180	.2400.180.0	420262	421671	438	286	351	2	20
2600	48	.2600.048.0	420263	421672	152	260	283	2	20
2600	108	.2600.108.0	420264	421673	282	283	328	2	20
2600	180	.2600.180.0	420265	421674	438	309	380	2	20
2800	48	.2800.048.0	420266	421675	152	313	338	2	20
2800	108	.2800.108.0	420267	421676	282	338	387	2	20
2800	180	.2800.180.0	420268	421677	438	367	443	2	20
3000	48	.3000.048.0	420269	421678	152	335	362	2	20
3000	108	.3000.108.0	420270	421679	282	361	414	2	20
3000	180	.3000.180.0	420271	421680	438	392	474	2	20

	Balg		Bewegungs non	aufnahme 1) ninal	allseitige Schwin-		Federrate)		requenz Balges
Außen- durch- messer	ge- wellte Länge	wirksamer Quer- schnitt	angular	lateral	gungen	axial	angular	lateral	axial	radial
D _a	- 1	Α	2 α _N	2λ _N	â	Cδ	Cα	C _λ	ω _a	$\omega_{\rm r}$
mm	mm	cm ²	grad	mm	mm	N/mm	Nm/grd	N/mm	Hz	Hz
1856	104	26245	3	0,9	0	1158	8449	536643	150	6760
1856	234	26245	6,7	4,6	0,4	515	3754	47143	70	1340
1856	390	26245	11	13	1	309	2253	10183	40	480
2056	104	32302	2,7	0,8	0	1281	11503	730650	150	7480
2056	234	32302	6	4,2	0,4	569	5114	64107	70	1480
2056	390	32302	9,9	12	1	342	3069	13872	40	530
2256	104	38987	2,5	0,7	0	1403	15205	965857	150	8200
2256	234	38987	5,5	3,8	0,3	623	6758	84718	70	1620
2256	390	38987	9	11	1	374	4050	18309	40	580
2456	104	46301	2,3	0,7	0	1524	19613	1245968	150	8900
2456	234	46301	5	3,5	0,3	677	8720	109332	70	1760
2456	390	46301	8,2	9,6	1	406	5235	23604	40	630
2656	104	54243	2,1	0,6	0	1646	24816	1576541	150	9620
2656	234	54243	4,7	3,2	0,3	731	11029	138302	70	1900
2656	390	54243	7,7	8,9	0,8	439	6615	29900	40	680
2856	104	62813	1,9	0,6	0	1767	30848	1959837	150	10330
2856	234	62813	4,3	3	0,2	785	13714	171984	65	2040
2856	390	62813	7,2	8,3	0,8	471	8218	37149	40	740
3056	104	72011	1,8	0,5	0	1888	37786	2400702	150	11050
3056	234	72011	4	2,8	0,2	839	16803	210733	65	2180
3056	390	72011	6,7	7,7	0,7	504	10082	45573	40	790

Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht führescheiten.

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

06

AXIAL-KOMPENSATOREN MIT FLANSCHEN TYP ABN, AFN

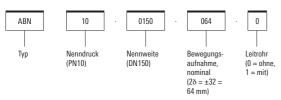
Typenbezeichnung

Die Typenbezeichnung besteht aus 2 Teilen

- 1. Typenreihe, definiert durch 3 Buchstaben
- 2. Nenngröße, definiert durch 10 Ziffern

Beispiel

Typ ABN: HYDRA Axial-Kompensator mit drehbaren Flanschen Typ AFN: HYDRA Axial-Kompensator mit glatten Festflanschen


Standardausführung/Werkstoffe

Balg vielwandig aus 1.4541

Flansch aus S235JRG2 (1.0038) oder P250GH (1.0460)

Betriebstemperatur: bis 300 °C / 450 °C

Typenbezeichnung (beispielhaft)

Bestelltext nach Richtlinie 2014/68/EU "Druckgeräterichtlinie"

Bei Bestellung bitte angeben:

Bei Standardausführung

■ Typenbezeichnung oder Bestellnummer

Mit Werkstoffvarianten

- Typenbezeichnung
- Angabe der Werkstoffe

Für die Prüfung und Dokumentation nach Druckgeräterichtlinie werden folgende Angaben benötigt:

Druckgeräteart nach Art. 1 & 2:

- Behälter Volumen V [I] _
- Rohrleitung Nennweite DN _____

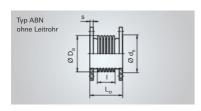
Mediumeigenschaft nach Art. 13:

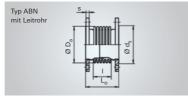
- Gruppe 1 gefährlich
- Gruppe 2 andere

Mediumzustand:

- Gasförmig oder flüssig, wenn PD > 0.5 bar
- Flüssig, wenn PD ≤ 0.5 bar

Auslegungsdaten:

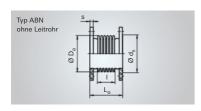

- Max. zul. Druck PS [bar]
- Max./min. zul. Temp. TS [°C]
- Prüfdruck PT [bar] _____

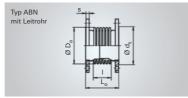

Optional:

■ Kategorie _____

Hinweis

Wir passen den Kompensator an Ihre Anforderungen an, wenn Sie uns die vom Standard abweichenden Maße angeben. Auf Wunsch können Flansche auch mit anderen Bohrbildern / Flanschblattdicken geliefert werden. Hierbei ändert sich ggf. die angegebene Baulänge L0.

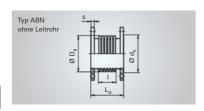


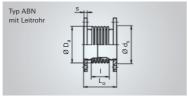

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Bau- länge	Gew c	vicht a.		Flansch ²	
	aufnahme 1) nominal	ABN 02	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Bördel- durch- messer	Blatt- dicke
DN	2 δ _N	-	-	-	L _o	G	G	PN	d ₅	s
-	mm	-	-	-	mm	kg	kg	-	mm	mm
50	20	.0050.020.0	419538	419635	117	3,3	3,4	6	90	16
50	40	.0050.040.0	419539	419636	162	3,5	3,7	6	90	16
50	70	.0050.070.0	419540	419637	244	4,1	4,5	6	90	16
65	23	.0065.023.0	419541	419638	117	4,3	4,5	6	107	16
65	60	.0065.060.0	419542	419639	189	4,6	5	6	107	16
65	87	.0065.087.0	419543	419640	263	5	6	6	107	16
80	27	.0080.027.0	419545	419641	126	7	7	6	122	18
80	64	.0080.064.0	419546	419642	196	7	7	6	122	18
80	92	.0080.092.0	419547	419643	275	8	8	6	122	18
100	46	.0100.046.0	419548	419644	153	7	8	6	147	18
100	73	.0100.073.0	419549	419645	197	8	8	6	147	18
100	98	.0100.098.0	419550	419646	286	10	11	6	147	18
125	45	.0125.045.0	419551	419647	155	9	10	6	178	20
125	81	.0125.081.0	419552	419648	207	10	10	6	178	20
125	140	.0125.140.0	419553	419649	372	14	15	6	178	20
150	45	.0150.045.0	419554	419650	155	11	11	6	202	20
150	81	.0150.081.0	419555	419651	207	11	12	6	202	20
150	160	.0150.160.0	419556	419652	392	16	18	6	202	20
200	60	.0200.060.0	419557	419653	184	15	16	6	258	22
200	110	.0200.110.0	419558	419654	271	17	19	6	258	22
200	190	.0200.190.0	419559	419655	419	23	25	6	258	22

			Y				
	Balg			saufnahme 1) ninal		Federrate	
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral
D _a	- 1	Α	2α _N	2 λ _N	C ₈	C _{\alpha}	C _{).}
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm
89	45	46	29	3,9	104	1,3	451
89	90	46	50	16	52	0,7	56
89	171	46	50	52	45	0,6	14
107	45	68,7	28	3,7	101	1,9	654
107	117	68,7	50	25	39	0,7	37
108	190	69,4	50	59	39	0,8	14
121	50	89,1	28	4,1	94	2,3	640
121	120	89,1	50	24	39	1	46
121	198	89,1	50	57	42	1	18
148	77	137	38	9	62	2,4	273
148	121	137	50	22	40	1,5	71
150	208	139	50	51	70	2,7	43
174	65	187	32	6,3	58	3	492
174	117	187	50	20	32	1,7	84
172	280	185	50	85	52	2,7	23
203	65	264	27	5,3	67	4,9	801
203	117	264	46	17	37	2,7	137
203	300	264	50	87	51	3,7	29
255	90	432	28	7,7	62	7,4	631
256	176	434	47	27	50	6	134
257	323	436	50	87	51	6,2	41

Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht führescheiten.

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

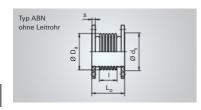

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Bau- länge		vicht a.		Flansch ²	
	aufnahme 1) nominal	ABN 02	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Bördel- durch- messer	Blatt- dicke
DN	2 δ _N	-	-	-	L _o	G	G	PN	d ₅	s
-	mm	-	-	-	mm	kg	kg	-	mm	mm
250	72	.0250.072.0	419560	419656	210	20	21	6	312	24
250	120	.0250.120.0	419561	419659	279	22	24	6	312	24
250	204	.0250.204.0	419562	419660	416	29	32	6	312	24
300	56	.0300.056.0	419563	419661	184	26	27	6	365	24
300	126	.0300.126.0	419564	419662	279	27	29	6	365	24
300	210	.0300.210.0	419565	419663	390	36	40	6	365	24
350	60	.0350.060.0	419566	419665	192	36	38	6	410	26
350	120	.0350.120.0	419567	419666	273	39	41	6	410	26
350	210	.0350.210.0	419568	419667	408	47	51	6	410	26
400	65	.0400.065.0	419569	419668	232	45	48	6	465	28
400	104	.0400.104.0	419570	419669	295	47	50	6	465	28
400	182	.0400.182.0	419571	419670	421	51	56	6	465	28
450	56	.0450.056.0	419572	419672	219	55	57	6	520	30
450	112	.0450.112.0	419573	419673	307	58	61	6	520	30
450	182	.0450.182.0	419574	419674	417	62	68	6	520	30
500	68	.0500.068.0	419575	419675	223	59	62	6	570	30
500	119	.0500.119.0	419576	419677	292	62	66	6	570	30
500	204	.0500.204.0	419577	419678	407	67	73	6	570	30
600	76	.0600.076.0	419578	419680	239	78	82	6	670	32
600	114	.0600.114.0	419579	419682	291	80	84	6	670	32
600	209	.0600.209.0	419580	419683	421	87	94	6	670	32

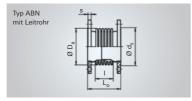

	Balg			saufnahme 1) ninal		Federrate	
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral
D _a	ı	Α	2 α _N	2λ _N	C _δ	C _a	C _λ
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm
312	102	661	27	8,4	62	11	752
315	170	667	42	23	48	8,9	212
316	306	670	50	71	49	9,1	67
365	76	916	18	4,2	91	23	2756
365	171	916	36	21	40	10	239
371	280	932	50	57	52	13	118
400	80	1104	18	4,3	82	25	2703
402	160	1110	33	17	58	18	480
402	294	1110	50	55	60	19	147
458	105	1445	17	5,3	211	85	5283
458	168	1445	26	14	132	53	1291
458	294	1445	38	42	75	30	240
513	88	1825	13	3,4	243	123	10935
513	176	1825	31	17	121	61	1361
513	286	1825	37	39	75	38	320
569	92	2252	14	3,9	214	134	10875
569	161	2252	24	12	122	76	2025
569	276	2252	35	35	71	44	401
674	104	3202	13	4,1	214	190	12099
674	156	3202	19	9,3	143	127	3593
674	286	3202	30	31	78	69	583

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht liberschreiten.

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP ABN 02... PN 2,5

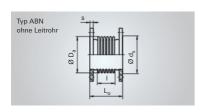

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Bau- länge		vicht a.		Flansch ²	
	aufnahme 1) nominal	ABN 02	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Bördel- durch- messer	Blatt- dicke
DN	2 δ _N	-	-	-	L _o	G	G	PN	d ₅	s
-	mm	-	-	-	mm	kg	kg	-	mm	mm
700	80	.0700.080.0	419581	419684	242	94	100	6	775	32
700	120	.0700.120.0	419582	419685	298	97	104	6	775	32
700	220	.0700.220.0	419583	419686	438	105	116	6	775	32
800	63	.0800.063.0	419584	419688	229	121	126	6	880	34
800	126	.0800.126.0	419585	419689	316	126	134	6	880	34
800	210	.0800.210.0	419586	419690	432	134	146	6	880	34
900	63	.0900.063.0	419587	419692	234	130	137	6	980	35
900	126	.0900.126.0	419588	419693	324	137	146	6	980	35
900	210	.0900.210.0	419589	419695	444	146	160	6	980	35
1000	72	.1000.072.0	419590	419697	254	149	156	6	1080	37
1000	120	.1000.120.0	419591	419698	318	154	164	6	1080	37
1000	240	.1000.240.0	419592	419699	478	166	183	6	1080	37
1200	72	.1200.072.0	419593	419700	269	204	223	2	1280	40
1200	120	.1200.120.0	419594	419701	333	213	237	2	1280	40
1200	216	.1200.216.0	419595	419703	461	231	270	2	1280	40

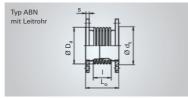

	Balg			saufnahme ¹⁾ ninal	Federrate			
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral	
D _a	- 1	Α	2 α _N	2λ _N	C ₈	C _{cc}	C _λ	
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm	
780	112	4324	12	4	203	244	13365	
780	168	4324	17	9,1	135	162	3950	
780	308	4324	27	30	74	89	644	
882	87	5588	8,4	2,2	293	455	41313	
882	174	5588	16	8,7	147	228	5182	
882	290	5588	23	24	88	137	1117	
992	90	7133	7,4	2	316	626	53147	
992	180	7133	14	7,9	158	313	6643	
992	300	7133	21	22	95	188	1438	
1095	96	8750	7,7	2,2	335	814	60745	
1095	160	8750	12	6,1	201	489	13121	
1095	320	8750	21	24	100	243	1632	
1295	96	12331	6,5	1,8	511	1750	130579	
1295	160	12331	11	5,1	306	1048	28150	
1295	288	12331	18	17	170	582	4827	

Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP ABN 06... PN 6

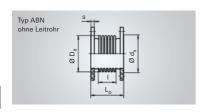


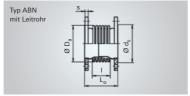

Nenn-	Axiale	Тур	Roctolle	nummer	Bau-	Cou	richt		Flansch ²		
weite	Bewegungs-	1,46		usführung	länge	C			Hansti		
	aufnahme ¹⁾ nominal	ABN 06	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Bördel- durch- messer	Blatt- dicke	
DN	2 δ _N	-	-	-	L _o	G	G	PN	d ₅	s	
-	mm	-	-	-	mm	kg	kg	-	mm	mm	
50	20	.0050.020.0	419706	419767	117	3,3	3,4	6	90	16	
50	52	.0050.052.0	419707	419769	199	3,9	4,2	6	90	16	
65	23	.0065.023.0	419708	419770	117	4,3	4,5	6	107	16	
65	41	.0065.041.0	419710	419771	153	4,4	4,6	6	107	16	
65	72	.0065.072.0	419711	419772	273	7	7	6	107	16	
80	27	.0080.027.0	419712	419773	126	7	7	6	122	18	
80	42	.0080.042.0	419713	419774	156	7	7	6	122	18	
80	77	.0080.077.0	419714	419775	283	9	10	6	122	18	
100	33	.0100.033.0	419715	419776	131	7	8	6	147	18	
100	59	.0100.059.0	419716	419777	185	8	9	6	147	18	
100	87	.0100.087.0	419717	419778	274	11	12	6	147	18	
125	36	.0125.036.0	419718	419779	142	9	10	6	178	20	
125	63	.0125.063.0	419719	419780	181	10	10	6	178	20	
125	98	.0125.098.0	419720	419781	303	13	14	6	178	20	
150	40	.0150.040.0	419721	419782	161	11	11	6	202	20	
150	72	.0150.072.0	419722	419783	227	13	14	6	202	20	
150	124	.0150.124.0	419723	419784	366	19	21	6	202	20	
200	40	.0200.040.0	419724	419785	159	15	16	6	258	22	
200	80	.0200.080.0	419725	419786	232	18	20	6	258	22	
200	140	.0200.140.0	419726	419787	350	25	27	6	258	22	

	Balg			saufnahme 1) ninal		Federrate			
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral		
D _a	- 1	Α	2 α _N	2λ _N	C _δ	C _{cc}	C _λ		
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm		
89	45	46	28	3,9	104	1,3	451		
89	126	46	50	28	61	0,8	34		
107	45	68,7	27	3,7	101	1,9	654		
107	81	68,7	42	12	56	1,1	112		
110	198	70,9	50	50	88	1,7	30		
121	50	89,1	27	4,1	94	2,3	640		
121	80	89,1	38	11	58	1,4	154		
123	204	90,8	50	48	95	2,4	40		
148	55	137	27	4,6	87	3,3	752		
149	108	138	43	16	71	2,7	160		
151	195	140	50	42	89	3,5	63		
174	52	187	25	4	72	3,7	953		
174	91	187	39	12	41	2,1	177		
173	210	186	50	45	88	4,6	71		
202	70	263	23	5,1	116	8,5	1189		
203	135	264	39	18	113	8,3	313		
205	272	267	50	61	102	7,6	70		
256	64	434	19	3,6	138	17	2791		
257	136	436	34	15	120	15	540		
260	252	441	50	50	109	13	145		

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0


Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Bau- länge		richt a.		Flansch ²	
	aufnahme 1) nominal	ABN 06	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Bördel- durch- messer	Blatt- dicke
DN	2 δ _N	-	-	-	L _o	G	G	PN	d ₅	s
_	mm	-	-	-	mm	kg	kg	-	mm	mm
250	48	.0250.048.0	419727	419788	182	22	23	6	312	24
250	84	.0250.084.0	419728	419789	236	23	25	6	312	24
250	144	.0250.144.0	419729	419790	352	32	34	6	312	24
300	60	.0300.060.0	419730	419791	190	29	30	6	365	24
300	90	.0300.090.0	419731	419792	230	30	32	6	365	24
300	135	.0300.135.0	419732	419793	310	38	41	6	365	24
350	45	.0350.045.0	419733	419794	177	38	40	6	410	26
350	105	.0350.105.0	419734	419795	261	42	44	6	410	26
350	165	.0350.165.0	419735	419796	369	52	56	6	410	26
400	52	.0400.052.0	419736	419797	216	47	49	6	465	28
400	104	.0400.104.0	419737	419798	304	51	55	6	465	28
400	169	.0400.169.0	419738	419799	428	62	67	6	465	28
450	56	.0450.056.0	419739	419800	224	58	60	6	520	30
450	98	.0450.098.0	419740	419801	293	61	65	6	520	30
450	182	.0450.182.0	419741	419802	445	76	82	6	520	30
500	66	.0500.066.0	419742	419803	233	66	69	6	570	30
500	116	.0500.116.0	419743	419804	308	72	77	6	570	30
500	198	.0500.198.0	419744	419805	459	97	104	6	570	30
600	76	.0600.076.0	419746	419806	249	86	90	6	670	32
600	114	.0600.114.0	419747	419807	305	91	97	6	670	32
600	198	.0600.198.0	419748	419808	458	122	130	6	670	32


	Balg		Bewegungs non	aufnahme 1) ninal	Federrate			
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral	
D _a	- 1	Α	2 α _N	2γ _N	C _δ	C _{cc}	C _y	
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm	
316	72	670	18	3,9	209	39	5156	
316	126	670	29	12	120	22	967	
319	240	677	45	39	109	20	245	
371	80	932	19	4,6	182	47	5062	
371	120	932	27	10	121	31	1496	
374	198	940	39	26	127	33	582	
402	63	1110	13	2,5	281	87	15014	
402	147	1110	28	14	120	37	1178	
405	253	1119	40	37	119	37	397	
461	88	1456	13	3,5	359	145	12887	
461	176	1456	23	14	179	72	1606	
462	299	1459	32	39	148	60	461	
514	92	1828	13	3,6	364	185	15018	
514	161	1828	23	12	208	106	2802	
515	312	1832	30	39	150	76	539	
572	100	2265	14	4,1	411	259	17778	
572	175	2265	22	13	235	148	3319	
574	324	2273	33	40	207	131	856	
677	112	3217	13	4,4	412	368	20180	
677	168	3217	19	10	275	246	5986	
678	319	3222	29	33	235	210	1421	

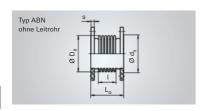
¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht führescheiten.

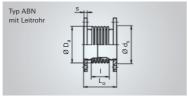
²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP ABN 06... PN 6

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Bau- länge		vicht a.		Flansch ²	
	aufnahme 1) nominal	ABN 06	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Bördel- durch- messer	Blatt- dicke
DN	2 δ _N	-	-	-	L _o	G	G	PN	d ₅	s
-	mm	-	-	-	mm	kg	kg	-	mm	mm
700	60	.0700.060.0	419749	419809	224	111	114	6	775	36
700	120	.0700.120.0	419750	419810	308	120	127	6	775	36
700	200	.0700.200.0	419751	419811	442	151	160	6	775	36
800	63	.0800.063.0	419753	419812	251	148	152	6	880	37
800	105	.0800.105.0	419755	419813	317	160	167	6	880	37
800	210	.0800.210.0	419757	419814	482	189	201	6	880	37
900	63	.0900.063.0	419758	419815	253	162	167	6	980	38
900	105	.0900.105.0	419759	419816	319	175	184	6	980	38
900	210	.0900.210.0	419760	419817	484	209	222	6	980	38
1000	66	.1000.066.0	419761	419818	277	192	198	6	1080	42
1000	110	.1000.110.0	419762	419819	347	207	217	6	1080	42
1000	198	.1000.198.0	419763	419820	487	237	252	6	1080	42
1200	69	.1200.069.0	419764	419821	295	306	321	6	1290	47
1200	115	.1200.115.0	419765	419822	365	324	350	6	1290	47
1200	207	.1200.207.0	419766	419823	505	361	398	6	1290	47

	Balg			saufnahme ¹⁾ ninal		Federrate			
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral		
D _a	- 1	A	2 α _N	2 _{YN}	C _δ	Cα	C _{\gamma}		
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm		
780	84	4324	9,1	2,3	583	700	68235		
780	168	4324	17	9,1	292	351	8544		
783	300	4342	25	27	253	305	2331		
887	99	5621	8,4	2,5	852	1330	93326		
887	165	5621	14	6,8	511	798	20150		
887	330	5621	23	27	256	400	2524		
996	99	7163	7,4	2,2	949	1888	132463		
996	165	7163	12	6	569	1132	28592		
996	330	7163	20	24	285	567	3580		
1100	105	8791	7	2,2	970	2369	147726		
1100	175	8791	11	6,1	582	1421	31909		
1100	315	8791	18	20	323	789	5466		
1296	105	12341	6,2	1,9	1088	3730	232590		
1296	175	12341	10	5,4	653	2238	50255		
1296	315	12341	16	17	363	1244	8622		

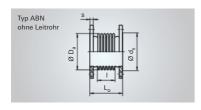

Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

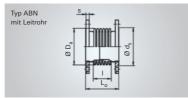

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP ABN 10...

PN 10

AXIAL-KOMPENSATOREN MIT DREHBAREN FLANSCHEN

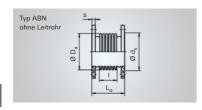

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Bau- länge		richt a.		Flansch ²	
	aufnahme 1) nominal	ABN 10	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Bördel- durch- messer	Blatt- dicke
DN	2 δ _N	-	-	-	L _o	G	G	PN	d ₅	s
-	mm	-	-	-	mm	kg	kg	-	mm	mm
50	24	.0050.024.0	419824	419901	134	6	6	16	90	20
50	46	.0050.046.0	419825	419902	222	7	7	16	90	20
65	18	.0065.018.0	419826	419903	116	7	7	16	107	20
65	48	.0065.048.0	419827	419904	215	9	9	16	107	20
80	20	.0080.020.0	419828	419905	125	8	8	16	122	20
80	41	.0080.041.0	419829	419906	169	8	9	16	122	20
80	54	.0080.054.0	419830	419907	227	10	11	16	122	20
100	26	.0100.026.0	419831	419908	133	10	10	16	147	22
100	46	.0100.046.0	419832	419909	169	10	11	16	147	22
100	80	.0100.080.0	419833	419910	298	15	16	16	147	22
125	30	.0125.030.0	419834	419911	151	12	12	16	178	22
125	45	.0125.045.0	419835	419912	179	12	13	16	178	22
125	85	.0125.085.0	419836	419913	306	17	18	16	178	22
150	32	.0150.032.0	419837	419914	160	16	17	16	202	24
150	64	.0150.064.0	419838	419915	220	17	18	16	202	24
150	95	.0150.095.0	419839	419916	310	22	23	16	202	24
200	40	.0200.040.0	419840	419917	168	21	22	10	258	24
200	80	.0200.080.0	419841	434624	236	23	25	10	258	24
200	110	.0200.110.0	419842	419919	300	28	30	10	258	24
250	48	.0250.048.0	419843	419920	186	28	29	10	312	26
250	84	.0250.084.0	419855	419921	240	29	31	10	312	26
250	130	.0250.130.0	419856	419922	420	42	45	10	312	26

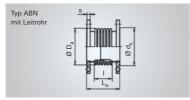

	Balg			saufnahme 1) ninal		Federrate			
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral		
D _a	ı	Α	2 α _N	2 _{YN}	C _δ	C _{cc}	C _y		
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm		
89	54	46	30	5,6	86	1,1	259		
90	140	46,6	48	28	112	1,4	51		
107	36	68,7	21	2,4	126	2,4	1275		
110	132	70,9	44	22	133	2,6	103		
121	44	89,1	21	2,8	190	4,7	1670		
121	88	89,1	34	11	95	2,4	209		
123	144	90,8	43	24	135	3,4	113		
149	48	138	21	3,2	159	6,1	1817		
149	84	138	31	9,8	91	3,5	340		
152	210	141	42	42	128	5	78		
171	56	184	20	3,7	147	7,5	1646		
171	84	184	27	8,2	98	5	488		
174	208	187	40	38	136	7,1	113		
203	60	264	19	3,5	254	19	3564		
203	120	264	31	14	127	9,3	445		
205	208	267	38	36	133	9,9	157		
257	68	436	18	3,8	240	29	4318		
257	136	436	28	15	120	15	540		
260	198	441	35	31	138	17	297		
316	72	670	17	3,9	209	39	5156		
316	126	670	25	12	120	22	967		
319	304	677	33	45	199	37	278		

1) Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP ABN 10... PN 10

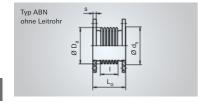

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Bau- länge		richt a.		Flansch ²	
	aufnahme 1) nominal	ABN 10	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Bördel- durch- messer	Blatt- dicke
DN	2 δ _N	-	-	-	L _o	G	G	PN	d ₅	s
_	mm	-	-	-	mm	kg	kg	-	mm	mm
300	45	.0300.045.0	419857	419923	178	32	33	10	365	26
300	90	.0300.090.0	419858	419924	241	35	37	10	365	26
300	137	.0300.137.0	419859	419925	447	54	58	10	365	26
350	60	.0350.060.0	419882	419926	211	50	52	10	410	30
350	105	.0350.105.0	419883	419927	277	53	56	10	410	30
350	150	.0350.150.0	419884	419928	487	86	91	10	410	30
400	48	.0400.048.0	419885	419929	235	70	72	10	465	32
400	96	.0400.096.0	419886	419930	331	79	82	10	465	32
400	156	.0400.156.0	419887	419931	479	102	108	10	465	32
450	70	.0450.070.0	419888	419932	272	87	90	10	520	36
450	98	.0450.098.0	419889	419933	322	93	97	10	520	36
450	182	.0450.182.0	419890	419934	472	108	114	10	520	36
500	66	.0500.066.0	419891	419935	259	101	104	10	570	38
500	116	.0500.116.0	419892	419936	340	110	115	10	570	38
500	192	.0500.192.0	419893	419937	489	141	149	10	570	38
600	72	.0600.072.0	419894	419938	275	135	139	10	670	42
600	108	.0600.108.0	419895	419939	333	143	148	10	670	42
600	198	.0600.198.0	419896	419940	491	181	190	10	670	42
700	57	.0700.057.0	419897	419941	248	163	167	10	775	40
700	114	.0700.114.0	419898	419942	344	183	190	10	775	40
700	190	.0700.190.0	419899	419943	472	209	220	10	775	40

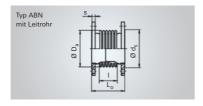

	Balg			saufnahme 1) ninal		Federrate			
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral		
D _a	- 1	Α	2a _N	2 _{YN}	Cδ	Cα	C _y		
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm		
372	63	935	14	2,7	290	75	13045		
372	126	935	24	11	145	38	1631		
374	330	940	31	44	237	62	391		
403	88	1113	17	4,7	250	77	6864		
403	154	1113	24	14	143	44	1282		
412	360	1140	32	47	285	90	479		
464	96	1466	12	3,6	723	294	21961		
464	192	1466	22	14	362	147	2749		
467	338	1476	30	41	287	118	708		
518	125	1844	12	4,8	560	287	12620		
518	175	1844	24	13	400	205	4599		
518	325	1844	26	38	215	110	717		
574	108	2273	13	4,4	620	392	23078		
574	189	2273	21	14	354	224	4303		
576	336	2282	29	40	279	177	1077		
678	116	3222	12	4,3	645	577	29497		
678	174	3222	17	9,8	430	385	8740		
680	330	3232	26	34	316	284	1791		
785	96	4353	8,6	2,4	1134	1371	102304		
785	192	4353	16	9,8	567	686	12788		
785	320	4353	22	27	340	411	2761		

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überscheiten.

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP ABN 16... PN 16

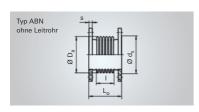

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Bau- länge		richt a.		Flansch ²	
	aufnahme 1) nominal	ABN 16	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Bördel- durch- messer	Blatt- dicke
DN	2 δ _N	-	-	-	L _o	G	G	PN	d ₅	s
_	mm	-	-	-	mm	kg	kg	-	mm	mm
50	22	.0050.022.0	419944	419984	135	6	6	16	92	20
50	42	.0050.042.0	419945	419985	226	7	8	16	92	20
65	28	.0065.028.0	419946	419986	141	7	7	16	107	20
65	48	.0065.048.0	419947	419987	215	9	9	16	107	20
80	23	.0080.023.0	419948	419988	142	9	9	16	122	20
80	50	.0080.050.0	419949	419989	215	10	10	16	122	20
100	31	.0100.031.0	419950	419990	151	11	11	16	147	22
100	53	.0100.053.0	419951	419991	228	13	14	16	147	22
125	21	.0125.021.0	419952	419992	138	12	13	16	178	22
125	42	.0125.042.0	419953	419993	180	13	13	16	178	22
125	59	.0125.059.0	419954	419994	242	15	16	16	178	22
150	24	.0150.024.0	419955	419995	145	16	16	16	208	24
150	48	.0150.048.0	419956	419996	190	17	18	16	208	24
150	66	.0150.066.0	419957	419997	246	20	21	16	208	24
200	30	.0200.030.0	419958	419998	160	23	24	16	258	26
200	60	.0200.060.0	419959	419999	214	25	27	16	258	26
200	97	.0200.097.0	419960	420000	377	35	37	16	258	26
250	32	.0250.032.0	419961	420001	197	34	35	16	320	29
250	56	.0250.056.0	419962	420002	254	36	38	16	320	29
250	103	.0250.103.0	419963	420003	383	47	50	16	320	29

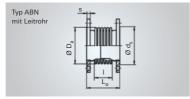

	Balg			saufnahme 1) ninal		Federrate	
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral
D _a	- 1	Α	2 α _N	2γ _N	C _δ	C _{cc}	C _y
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm
89	54	46	28	5,2	143	1,8	430
91	143	47,2	40	26	149	2	66
108	60	69,4	27	5,9	124	2,4	457
110	132	70,9	37	22	133	2,6	103
122	60	89,9	22	4,3	273	6,8	1302
123	132	90,8	35	20	147	3,7	146
150	65	139	23	5	223	8,6	1400
152	140	141	33	18	192	7,5	264
172	42	185	15	1,9	346	18	6932
172	84	185	25	7,7	173	8,9	867
174	144	187	31	18	196	10	338
203	45	264	14	2	339	25	8455
203	90	264	24	7,8	169	12	1054
205	144	267	29	17	193	14	475
260	54	441	14	2,3	508	62	14678
260	108	441	24	9,1	254	31	1835
262	270	445	29	37	271	33	316
318	76	674	12	2,8	634	119	14135
318	133	674	19	8,5	362	68	2635
320	260	679	27	30	296	56	568

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP ABN 16... PN 16

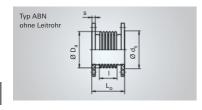


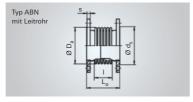

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Bau- länge		vicht a.		Flansch ²	
	aufnahme 1) nominal	ABN 16	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Bördel- durch- messer	Blatt- dicke
DN	2 δ _N	-	-	-	L _o	G	G	PN	d ₅	s
-	mm	-	-	-	mm	kg	kg	-	mm	mm
300	30	.0300.030.0	419964	420004	191	46	47	16	375	32
300	80	.0300.080.0	419965	420005	296	52	55	16	375	32
300	120	.0300.120.0	419966	420006	476	75	79	16	375	32
350	30	.0350.030.0	419967	420007	197	65	66	16	410	35
350	80	.0350.080.0	419968	420008	302	72	75	16	410	35
350	130	.0350.130.0	419969	420009	449	94	99	16	410	35
400	48	.0400.048.0	419970	420010	257	92	94	16	465	38
400	84	.0400.084.0	419971	420011	335	101	105	16	465	38
400	132	.0400.132.0	419972	420012	439	113	118	16	465	38
450	52	.0450.052.0	419974	420014	265	116	119	16	520	42
450	91	.0450.091.0	419975	420015	343	127	131	16	520	42
450	143	.0450.143.0	419976	420016	447	141	146	16	520	42
500	48	.0500.048.0	419977	420017	253	152	155	16	570	46
500	96	.0500.096.0	419978	420018	337	165	169	16	570	46
500	144	.0500.144.0	419979	420019	421	177	183	16	570	46

	Balg			saufnahme 1) ninal		Federrate			
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral		
D _a	1	Α	2 α _N	2γ _N	C _δ	C _{\alpha}	C _y		
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm		
374	63	940	9,6	1,8	930	243	42077		
374	168	940	22	13	349	91	2220		
376	345	946	24	40	322	85	489		
408	63	1128	8,8	1,7	911	285	49455		
408	168	1128	20	12	342	107	2611		
412	312	1140	25	35	329	104	736		
467	104	1476	12	3,8	934	383	24342		
467	182	1476	19	12	534	219	4544		
467	286	1476	24	29	340	139	1172		
520	104	1851	12	3,7	943	485	30826		
520	182	1851	21	13	539	277	5753		
520	286	1851	23	28	343	176	1483		
576	84	2282	9,9	2,5	1117	708	68986		
576	168	2282	18	10	558	354	8616		
576	252	2282	23	22	372	236	2553		

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

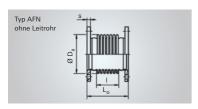

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Bau- länge		richt a.		Flansch ²	
	aufnahme 1) nominal	ABN 25	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Bördel- durch- messer	Blatt- dicke
DN	2 δ _N	-	-	-	L _o	G	G	PN	d ₅	s
_	mm	-	-	-	mm	kg	kg	-	mm	mm
50	13	.0050.013.0	420020	420071	122	6	6	40	92	20
50	29	.0050.029.0	420021	420072	182	7	7	40	92	20
65	17	.0065.017.0	420022	420073	130	8	8	40	107	22
65	40	.0065.040.0	420023	420074	220	10	10	40	107	22
80	23	.0080.023.0	420024	420075	151	10	11	40	122	24
80	42	.0080.042.0	420025	420076	222	12	12	40	122	24
100	23	.0100.023.0	420044	420077	147	14	15	40	147	26
100	48	.0100.048.0	420045	420078	222	16	17	40	147	26
125	26	.0125.026.0	420046	420079	174	19	20	40	178	28
125	52	.0125.052.0	420049	420080	238	21	21	40	178	28
150	29	.0150.029.0	420052	420081	178	24	25	40	208	30
150	58	.0150.058.0	420053	420082	242	26	27	40	208	30
200	26	.0200.026.0	420054	420083	190	34	35	25	258	32
200	46	.0200.046.0	420056	420098	244	36	37	25	258	32
200	71	.0200.071.0	420057	420099	317	41	43	25	258	32
250	24	.0250.024.0	420058	420100	195	47	49	25	320	35
250	48	.0250.048.0	420059	420101	255	51	53	25	320	35
250	79	.0250.079.0	420061	420102	335	56	58	25	320	35
300	27	.0300.027.0	420062	420103	207	62	64	25	375	38
300	55	.0300.055.0	420063	420104	273	67	69	25	375	38
300	82	.0300.082.0	420064	420107	339	72	75	25	375	38

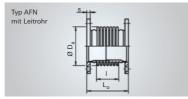

	Balg			saufnahme ¹⁾ ninal		Federrate	
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral
D _a	ı	Α	2a _N	2λ _N	Cδ	C _{cc}	C _λ
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm
90	40	46,6	19	2,3	391	5,1	2173
91	99	47,2	32	12	215	2,8	198
109	44	70,1	19	2,6	334	6,5	2311
111	132	71,6	33	18	212	4,2	166
123	60	90,8	22	4,2	323	8,1	1555
125	130	92,5	32	17	217	5,6	227
151	52	140	18	3	334	13	3302
152	126	141	30	15	213	8,3	361
174	64	187	18	3,6	442	23	3864
174	128	187	29	14	221	12	483
205	64	267	17	3,4	434	32	5410
205	128	267	27	14	217	16	676
261	72	443	12	2,6	843	104	13759
261	126	443	18	8	482	59	2569
262	198	445	23	20	370	46	802
320	60	679	9	1,6	1281	242	46135
320	120	679	16	6,5	640	121	5762
320	200	679	21	18	384	72	1245
374	66	940	8,7	1,7	1186	310	48892
374	132	940	16	7	593	155	6112
374	198	940	19	16	395	103	1809

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht liberschreiten.

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP ABN 25... PN 25

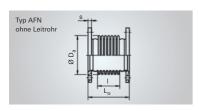


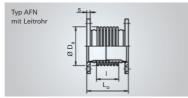

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Bau- Gew länge ca				Flansch ²		
	aufnahme 1) nominal	ABN 25	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Bördel- durch- messer	Blatt- dicke	
DN	2 δ _N	-	-	-	L.	G	G	PN	d ₅	s	
-	mm	-	-	-	mm	kg	kg	-	mm	mm	
350	30	.0350.030.0	420065	420108	223	98	100	25	410	42	
350	50	.0350.050.0	420066	420109	271	103	105	25	410	42	
350	80	.0350.080.0	420067	420110	343	110	113	25	410	42	
400	32	.0400.032.0	420068	420111	273	137	140	25	465	48	
400	56	.0400.056.0	420069	420112	348	147	150	25	465	48	
400	96	.0400.096.0	420070	420113	499	171	177	25	465	48	

	Balg			saufnahme 1) ninal	Federrate			
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral	
D _a	- 1	А	2 α _N	2 λ _N	C _δ	C _{\alpha}	C _λ	
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm	
412	72	1140	8,8	1,9	1425	451	59854	
412	120	1140	14	5,2	855	271	12928	
412	192	1140	19	13	534	169	3154	
466	100	1473	8,1	2,5	1908	780	53659	
466	175	1473	13	7,5	1090	446	10010	
469	324	1483	18	24	689	284	1859	

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

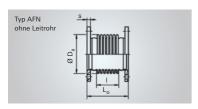


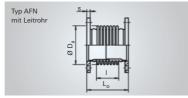

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Baulänge		richt a.	Flan	sch ²
	aufnahme 1) nominal	AFN 02	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Blattdicke
DN	2 δ _N	-	-	-	L _o	G	G	PN	s
_	mm	-	-	-	mm	kg	kg	-	mm
50	20	.0050.020.0	421681	421833	129	3,2	3,4	6	16
50	40	.0050.040.0	421682	421834	174	3,4	3,6	6	16
50	70	.0050.070.0	421683	421835	255	3,9	4,3	6	16
65	23	.0065.023.0	421684	421836	129	4,1	4,3	6	16
65	60	.0065.060.0	421685	421837	201	4,4	4,8	6	16
65	87	.0065.087.0	421686	421838	274	5	6	6	16
80	27	.0080.027.0	421687	421839	136	6	7	6	18
80	64	.0080.064.0	421688	421840	206	7	7	6	18
80	92	.0080.092.0	421689	421841	284	7	8	6	18
100	46	.0100.046.0	421690	421842	163	7	8	6	18
100	73	.0100.073.0	421691	421843	207	8	8	6	18
100	98	.0100.098.0	421692	421844	294	10	11	6	18
125	45	.0125.045.0	421693	421845	163	9	10	6	20
125	81	.0125.081.0	421694	421846	215	10	10	6	20
125	140	.0125.140.0	421695	421847	378	14	15	6	20
150	45	.0150.045.0	421696	421848	163	10	11	6	20
150	81	.0150.081.0	421697	421849	215	11	12	6	20
150	160	.0150.160.0	421698	421850	398	16	18	6	20
200	60	.0200.060.0	421699	421851	190	15	16	6	22
200	110	.0200.110.0	421700	421852	276	17	19	6	22
200	190	.0200.190.0	421701	421853	423	22	25	6	22

	Balg			saufnahme 1) ninal		Federrate	
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral
D _a	I	Α	2 α _N	2λ _N	C _δ	C _{cc}	C _λ
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm
89	45	46	29	3,9	104	1,3	451
89	90	46	50	16	52	0,7	56
89	171	46	50	52	45	0,6	14
107	45	68,7	28	3,7	101	1,9	654
107	117	68,7	50	25	39	0,7	37
108	190	69,4	50	59	39	0,8	14
121	50	89,1	28	4,1	94	2,3	640
121	120	89,1	50	24	39	1	46
121	198	89,1	50	57	42	1,1	18
148	77	137	37	9	62	2,4	273
148	121	137	50	22	40	1,5	71
150	208	139	50	51	70	2,7	43
174	65	187	31	6,3	58	3	492
174	117	187	49	20	32	1,7	84
172	280	185	50	85	52	2,7	23
203	65	264	27	5,3	67	5	801
203	117	264	43	17	37	2,8	137
203	300	264	50	87	51	3,7	29
255	90	432	27	7,7	62	7,4	631
256	176	434	44	27	50	6	134
257	323	436	50	87	51	6,2	41

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überscheiden

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

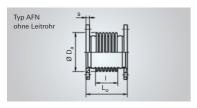


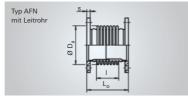

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Baulänge	Gew	richt a.	Flan	sch ²
	aufnahme 1) nominal	AFN 02	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Blattdicke
DN	2 δ _N	-	-	-	L _o	G	G	PN	s
_	mm	-	-	-	mm	kg	kg	-	mm
250	72	.0250.072.0	421702	421854	214	20	21	6	24
250	120	.0250.120.0	421703	421855	282	22	24	6	24
250	204	.0250.204.0	421704	421856	418	29	32	6	24
300	56	.0300.056.0	421705	421857	188	25	28	6	24
300	126	.0300.126.0	421706	421858	283	27	31	6	24
300	210	.0300.210.0	421707	421859	392	35	41	6	24
350	60	.0350.060.0	421708	421860	194	35	38	6	26
350	120	.0350.120.0	421709	421861	274	38	42	6	26
350	210	.0350.210.0	421710	421863	408	46	53	6	26
400	65	.0400.065.0	421711	421864	230	44	48	6	28
400	104	.0400.104.0	421712	421865	293	46	51	6	28
400	182	.0400.182.0	421713	421866	419	50	58	6	28
450	56	.0450.056.0	421714	421867	217	54	57	6	30
450	112	.0450.112.0	421715	421868	305	57	63	6	30
450	182	.0450.182.0	421716	421869	415	61	69	6	30
500	68	.0500.068.0	421717	421870	221	58	63	6	30
500	119	.0500.119.0	421718	421871	290	61	67	6	30
500	204	.0500.204.0	421719	421872	405	66	75	6	30
600	76	.0600.076.0	421720	421873	237	76	82	6	32
600	114	.0600.114.0	421721	421874	289	79	86	6	32
600	209	.0600.209.0	421722	421875	419	85	96	6	32

	Balg			saufnahme ¹⁾ ninal		Federrate	
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral
D _a	ı	Α	2 α _N	2λ _N	Cδ	C _{cc}	C _λ
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm
312	102	661	26	8,4	62	11	752
315	170	667	39	23	48	8,9	212
316	306	670	50	71	49	9,3	67
365	76	916	18	4,2	91	23	2756
365	171	916	34	21	40	10	239
371	280	932	50	57	52	13	118
400	80	1104	17	4,3	82	25	2703
402	160	1110	32	17	58	18	480
402	294	1110	49	55	60	19	147
458	105	1445	17	5,3	211	85	5283
458	168	1445	26	14	132	53	1291
458	294	1445	39	42	75	31	240
513	88	1825	13	3,4	243	123	10935
513	176	1825	25	14	121	62	1361
513	286	1825	35	36	75	38	320
569	92	2252	14	3,9	214	135	10875
569	161	2252	24	12	122	77	2025
569	276	2252	35	35	71	45	401
674	104	3202	13	4,1	214	191	12099
674	156	3202	19	9,3	143	127	3593
674	286	3202	31	31	78	69	583

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht liberschreiten.

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

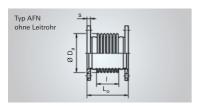

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Baulänge		richt a.	Flan	sch ²
	aufnahme ¹⁾ nominal	AFN 02	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Blattdicke
DN	2 δ _N	-	-	-	L,	G	G	PN	s
-	mm	-	-	-	mm	kg	kg	-	mm
700	80	.0700.080.0	421723	421876	240	94	101	6	32
700	120	.0700.120.0	421724	421877	296	97	106	6	32
700	220	.0700.220.0	421725	421878	436	105	119	6	32
800	63	.0800.063.0	421727	421879	227	120	126	6	34
800	126	.0800.126.0	421728	421880	314	126	137	6	34
800	210	.0800.210.0	421729	421881	430	133	149	6	34
900	63	.0900.063.0	421730	421882	232	130	136	6	35
900	126	.0900.126.0	421731	421883	322	137	150	6	35
900	210	.0900.210.0	421732	421884	442	145	164	6	35
1000	72	.1000.072.0	421733	421885	252	148	156	6	37
1000	120	.1000.120.0	421734	421886	316	153	167	6	37
1000	240	.1000.240.0	421735	421887	476	165	187	6	37
1200	72	.1200.072.0	421736	421888	266	19	216	2	40
1200	120	.1200.120.0	421737	421889	330	28	237	2	40
1200	216	.1200.216.0	421738	421890	458	47	264	2	40
1400	48	.1400.048.0	421739	421891	178	245	257	2	42
1400	108	.1400.108.0	421740	421892	308	257	280	2	42
1400	180	.1400.180.0	421741	421893	464	271	310	2	42
1600	48	.1600.048.0	421742	421894	186	333	347	2	46
1600	108	.1600.108.0	421743	421895	316	347	374	2	46
1600	180	.1600.180.0	421744	421896	472	364	408	2	46

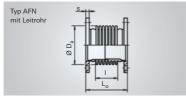

	Balg			saufnahme ¹⁾ ninal		Federrate	
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral
D _a	- 1	Α	2a _N	2 λ _N	C _δ	C _a	C _λ
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm
780	112	4324	12	4	203	244	13365
780	168	4324	17	9,1	135	162	3950
780	308	4324	27	30	74	89	644
882	87	5588	8,4	2,2	293	456	41313
882	174	5588	16	8,7	147	228	5182
882	290	5588	24	24	88	137	1117
992	90	7133	7,4	2	316	628	53147
992	180	7133	14	7,9	158	313	6643
992	300	7133	21	22	95	188	1438
1095	96	8750	7,7	2,2	335	814	60745
1095	160	8750	13	6,1	201	489	13121
1095	320	8750	22	24	100	245	1632
1295	96	12331	6,5	1,8	511	1750	130579
1295	160	12331	11	5,1	306	1052	28150
1295	288	12331	18	17	170	582	4827
1456	104	16016	3,8	1,2	911	4053	257632
1456	234	16016	8,4	5,9	405	1802	22624
1456	390	16016	13	16	243	1081	4887
1656	104	20816	3,3	1	1035	5990	380429
1656	234	20816	7,4	5,2	460	2660	33398
1656	390	20816	12	14	276	1596	7214

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überscheiten.

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP AFN 02... PN 2,5

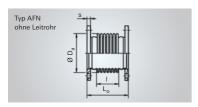

Nenn- weite	Axiale Bewegungs-	Тур	Bestellr Standarda	nummer usführung	Baulänge	Gew c	richt a.	Flan	sch ²
	aufnahme 1) nominal	AFN 02	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Blattdicke
DN	2 δ _N	-	-	-	L _o	G	G	PN	s
-	mm	-	-	-	mm	kg	kg	-	mm
1800	48	.1800.048.0	421752	421897	194	404	420	2	50
1800	108	.1800.108.0	421753	421898	324	420	450	2	50
1800	180	.1800.180.0	421754	421899	480	438	488	2	50
2000	48	.2000.048.0	421755	421900	198	465	482	2	52
2000	108	.2000.108.0	421757	421901	328	482	516	2	52
2000	180	.2000.180.0	421759	421902	484	502	558	2	52

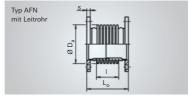

	Balg			aufnahme 1) ninal	Federrate			
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral	
D _a	- 1	Α	2 α _N	2λ _N	C _δ	C _{\alpha}	C _{).}	
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm	
1856	104	26245	3	0,9	1158	8449	536643	
1856	234	26245	6,6	4,6	515	3754	47143	
1856	390	26245	11	13	309	2253	10183	
2056	104	32302	2,7	0,8	1281	11503	730650	
2056	234	32302	6	4,2	569	5114	64107	
2056	390	32302	9,6	12	342	3069	13872	

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP AFN 06... PN 6

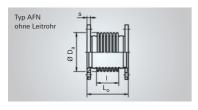


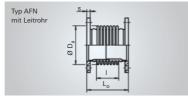

Nenn-	Axiale	Тур		nummer	Baulänge		richt	Flan	sch ²
weite	Bewegungs- aufnahme 1)		Standarda	usführung		С	a.		
	nominal	AFN 06	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Blattdicke
DN	2 δ _N	-	-	-	L _o	G	G	PN	s
-	mm	-	-	-	mm	kg	kg	-	mm
50	20	.0050.020.0	421903	421960	129	3,2	3,4	6	16
50	52	.0050.052.0	421904	421961	210	3,7	4,1	6	16
65	23	.0065.023.0	421905	421962	129	4,1	4,3	6	16
65	41	.0065.041.0	421906	421963	165	4,2	4,6	6	16
65	72	.0065.072.0	421907	421964	282	6	7	6	16
80	27	.0080.027.0	421908	421965	136	6	7	6	18
80	42	.0080.042.0	421909	421966	166	7	7	6	18
80	77	.0080.077.0	421910	421967	290	9	10	6	18
100	33	.0100.033.0	421911	421968	141	7	7	6	18
100	59	.0100.059.0	421912	421969	194	8	8	6	18
100	87	.0100.087.0	421913	421970	281	10	11	6	18
125	36	.0125.036.0	421914	421971	150	9	10	6	20
125	63	.0125.063.0	421915	421972	189	9	10	6	20
125	98	.0125.098.0	421916	421973	308	13	14	6	20
150	40	.0150.040.0	421917	422009	168	11	11	6	20
150	72	.0150.072.0	421918	422010	233	13	14	6	20
150	124	.0150.124.0	421919	422011	370	18	20	6	20
200	40	.0200.040.0	421920	422012	164	15	16	6	22
200	80	.0200.080.0	421921	422013	236	18	19	6	22
200	140	.0200.140.0	421922	422014	352	25	27	6	22

	Balg			saufnahme 1) ninal		Federrate	
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral
D _a	ı	Α	2 α _N	2λ _N	C _ô	C _{\alpha}	C _{λ.}
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm
89	45	46	28	3,9	104	1,3	451
89	126	46	50	28	61	0,8	34
107	45	68,7	27	3,7	101	1,9	654
107	81	68,7	42	12	56	1,1	112
110	198	70,9	50	50	88	1,8	30
121	50	89,1	27	4,1	94	2,3	640
121	80	89,1	38	11	58	1,5	154
123	204	90,8	50	48	95	2,4	40
148	55	137	27	4,6	87	3,3	752
149	108	138	43	16	71	2,7	160
151	195	140	50	42	89	3,5	63
174	52	187	25	4	72	3,7	953
174	91	187	39	12	41	2,1	177
173	210	186	50	45	88	4,6	71
202	70	263	23	5,1	116	8,5	1189
203	135	264	39	18	113	8,4	313
205	272	267	50	61	102	7,7	70
256	64	434	19	3,6	138	17	2791
257	136	436	34	15	120	15	540
260	252	441	50	50	109	13	145

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0


Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Baulänge		vicht a.	Flan	sch ²
	aufnahme 1) nominal	AFN 06	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Blattdicke
DN	2 δ _N	-	-	-	L,	G	G	PN	s
_	mm	-	-	-	mm	kg	kg	-	mm
250	48	.0250.048.0	421923	422015	184	21	22	6	24
250	84	.0250.084.0	421924	422016	238	23	25	6	24
250	144	.0250.144.0	421925	422017	352	31	34	6	24
300	60	.0300.060.0	421926	422018	192	28	30	6	24
300	90	.0300.090.0	421927	422019	232	29	33	6	24
300	135	.0300.135.0	421928	422020	310	37	41	6	24
350	45	.0350.045.0	421929	422022	177	37	39	6	26
350	105	.0350.105.0	421930	422023	261	41	44	6	26
350	165	.0350.165.0	421931	422024	367	51	56	6	26
400	52	.0400.052.0	421932	422025	213	46	48	6	28
400	104	.0400.104.0	421933	422026	301	50	55	6	28
400	169	.0400.169.0	421934	422027	424	61	68	6	28
450	56	.0450.056.0	421935	422029	221	56	59	6	30
450	98	.0450.098.0	421936	422030	290	60	65	6	30
450	182	.0450.182.0	421937	422031	441	74	82	6	30
500	66	.0500.066.0	421938	422033	229	64	68	6	30
500	116	.0500.116.0	421939	422034	304	70	77	6	30
500	198	.0500.198.0	421941	422036	453	94	104	6	30
600	76	.0600.076.0	421942	422037	245	83	89	6	32
600	114	.0600.114.0	421943	422038	301	89	96	6	32
600	198	.0600.198.0	421944	422039	452	118	130	6	32

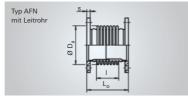

	Balg		Bewegungs non	aufnahme 1) ninal		Federrate	
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral
D _a	I	Α	2 α _N	2 λ _N	C _δ	C _{cc}	C _{).}
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm
316	72	670	18	3,9	209	39	5156
316	126	670	29	12	120	22	967
319	240	677	45	39	109	21	245
371	80	932	19	4,6	182	47	5062
371	120	932	27	10	121	32	1496
374	198	940	39	26	127	33	582
402	63	1110	13	2,5	281	87	15014
402	147	1110	28	14	120	37	1178
405	253	1119	40	37	119	37	397
461	88	1456	13	3,5	359	146	12887
461	176	1456	23	14	179	73	1606
462	299	1459	32	39	148	60	461
514	92	1828	13	3,6	364	186	15018
514	161	1828	20	11	208	106	2802
515	312	1832	30	39	150	76	539
572	100	2265	14	4,1	411	260	17778
572	175	2265	22	13	235	148	3319
574	324	2273	33	40	207	131	856
677	112	3217	13	4,4	412	370	20180
677	168	3217	19	10	275	247	5986
678	319	3222	29	33	235	211	1421

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht liberschreiten.

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP AFN 06... PN 6

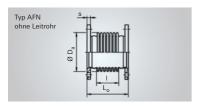
Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Baulänge		richt a.	Flan	sch ²
	aufnahme 1) nominal	AFN 06	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Blattdicke
DN	2 δ _N	-	-	-	L,	G	G	PN	s
-	mm	-	-	-	mm	kg	kg	-	mm
700	60	.0700.060.0	421945	422040	220	107	111	6	36
700	120	.0700.120.0	421946	422041	304	117	126	6	36
700	200	.0700.200.0	421947	422042	436	146	159	6	36
800	63	.0800.063.0	421948	422044	245	142	147	6	37
800	105	.0800.105.0	421949	422046	311	153	164	6	37
800	210	.0800.210.0	421950	422047	476	183	199	6	37
900	63	.0900.063.0	421951	422048	247	155	162	6	38
900	105	.0900.105.0	421952	422049	313	169	180	6	38
900	210	.0900.210.0	421953	422050	478	202	221	6	38
1000	66	.1000.066.0	421954	422051	271	184	192	6	42
1000	110	.1000.110.0	421955	422053	341	199	213	6	42
1000	198	.1000.198.0	421956	422054	481	229	250	6	42
1200	69	.1200.069.0	421957	422055	289	295	308	6	47
1200	115	.1200.115.0	421958	422056	359	313	337	6	47
1200	207	.1200.207.0	421959	422057	499	349	384	6	47

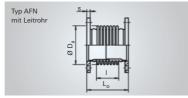

	Balg			saufnahme 1) ninal		Federrate	
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral
D _a	- 1	Α	2 α _N	2λ _N	C ₈	C _{cc}	C _λ
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm
780	84	4324	9,1	2,3	583	703	68235
780	168	4324	17	9,1	292	352	8544
783	300	4342	25	27	253	308	2331
887	99	5621	8,4	2,5	852	1337	93326
887	165	5621	14	6,8	511	803	20150
887	330	5621	23	27	256	401	2524
996	99	7163	7,4	2,2	949	1896	132463
996	165	7163	12	6	569	1138	28592
996	330	7163	20	24	285	569	3580
1100	105	8791	7	2,2	970	2379	147726
1100	175	8791	11	6,1	582	1426	31909
1100	315	8791	18	20	323	794	5466
1296	105	12341	6,2	1,9	1088	3743	232590
1296	175	12341	10	5,4	653	2245	50255
1296	315	12341	16	17	363	1248	8622

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP AFN 10... PN 10



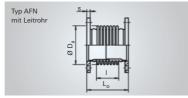

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Baulänge		vicht a.	Flan	sch ²
	aufnahme ¹⁾ nominal	AFN 10	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Blattdicke
DN	2 δ _N	-	-	-	L _o	G	G	PN	s
-	mm	-	-	-	mm	kg	kg	-	mm
50	24	.0050.024.0	422058	422104	142	6	6	16	20
50	46	.0050.046.0	422059	422105	228	7	7	16	20
65	18	.0065.018.0	422060	422106	124	7	7	16	20
65	48	.0065.048.0	422061	422107	220	8	9	16	20
80	20	.0080.020.0	422062	422108	132	8	8	16	20
80	41	.0080.041.0	422063	422109	176	8	8	16	20
80	54	.0080.054.0	422064	422110	232	9	10	16	20
100	26	.0100.026.0	422065	422111	138	9	10	16	22
100	46	.0100.046.0	422066	422112	174	10	10	16	22
100	80	.0100.080.0	422067	422113	300	14	15	16	22
125	30	.0125.030.0	422068	422115	156	12	12	16	22
125	45	.0125.045.0	422069	422116	184	12	12	16	22
125	85	.0125.085.0	422070	422117	308	16	17	16	22
150	32	.0150.032.0	422071	422118	162	16	16	16	24
150	64	.0150.064.0	422072	422119	222	17	18	16	24
150	95	.0150.095.0	422073	422120	310	21	23	16	24
200	40	.0200.040.0	422074	422121	170	21	22	10	24
200	80	.0200.080.0	422075	422122	238	23	24	10	24
200	110	.0200.110.0	422076	422123	300	27	29	10	24
250	48	.0250.048.0	422077	422124	186	27	28	10	26
250	84	.0250.084.0	422078	422125	240	29	30	10	26
250	130	.0250.130.0	422079	422126	418	41	44	10	26

	Balg			saufnahme 1) minal		Federrate	
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral
D _a	ı	Α	2 α _N	2 λ _N	C _δ	C _a	C _λ
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm
89	54	46	30	5,6	86	1,1	259
90	140	46,6	48	28	112	1,5	51
107	36	68,7	21	2,4	126	2,4	1275
110	132	70,9	44	22	133	2,7	103
121	44	89,1	21	2,8	190	4,8	1670
121	88	89,1	34	11	95	2,4	209
123	144	90,8	43	24	135	3,5	113
149	48	138	21	3,2	159	6,2	1817
149	84	138	31	9,8	91	3,5	340
152	210	141	42	42	128	5,1	78
171	56	184	20	3,7	147	7,6	1646
171	84	184	27	8,2	98	5,1	488
174	208	187	40	38	136	7,2	113
203	60	264	19	3,5	254	19	3564
203	120	264	31	14	127	9,4	445
205	208	267	38	36	133	10	157
257	68	436	18	3,8	240	29	4318
257	136	436	28	15	120	15	540
260	198	441	35	31	138	17	297
316	72	670	17	3,9	209	39	5156
316	126	670	25	12	120	22	967
319	304	677	33	45	199	38	278

1) Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

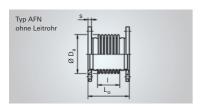
Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Baulänge		richt a.	Flan	sch ²
	aufnahme ¹⁾ nominal	AFN 10	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Blattdicke
DN	2 δ _N	-	-	-	L _o	G	G	PN	s
-	mm	-	-	-	mm	kg	kg	-	mm
300	45	.0300.045.0	422080	422127	177	31	33	10	26
300	90	.0300.090.0	422081	422128	240	34	37	10	26
300	137	.0300.137.0	422082	424785	444	52	58	10	26
350	60	.0350.060.0	422083	422130	207	49	52	10	30
350	105	.0350.105.0	422084	422131	273	52	56	10	30
350	150	.0350.150.0	422085	422132	479	83	90	10	30
400	48	.0400.048.0	422086	422133	229	67	70	10	32
400	96	.0400.096.0	422087	422134	325	76	81	10	32
400	156	.0400.156.0	422088	422135	471	98	106	10	32
450	70	.0450.070.0	422090	422136	266	84	89	10	36
450	98	.0450.098.0	422091	422137	316	89	95	10	36
450	182	.0450.182.0	422092	422138	466	105	113	10	36
500	66	.0500.066.0	422093	422139	253	97	102	10	38
500	116	.0500.116.0	422094	422140	334	106	113	10	38
500	192	.0500.192.0	422095	422141	481	136	146	10	38
600	72	.0600.072.0	422096	422142	269	130	136	10	42
600	108	.0600.108.0	422098	422143	327	138	145	10	42
600	198	.0600.198.0	422099	422144	483	174	186	10	42
700	57	.0700.057.0	422100	422145	240	156	160	10	40
700	114	.0700.114.0	422101	422146	336	175	185	10	40
700	190	.0700.190.0	422103	422147	464	202	215	10	40


	Balg			saufnahme 1) ninal		Federrate	angular lateral cα cλ Nm/grd N/mm 76 13045 38 1631 63 391 78 6864 45 1282 92 479 297 21961 149 2749 119 708 289 12620 206 4599 111 717 395 23078 225 4303 179 1077 581 29497 388 8740 286 1791 1381 102304	
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral	
D _a	ı	Α	2a _N	2λ _N	C _δ	C _a	C _λ	
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm	
372	63	935	14	2,7	290	76	13045	
372	126	935	24	11	145	38	1631	
374	330	940	31	44	237	63	391	
403	88	1113	17	4,7	250	78	6864	
403	154	1113	24	14	143	45	1282	
412	360	1140	32	47	285	92	479	
464	96	1466	12	3,6	723	297	21961	
464	192	1466	22	14	362	149	2749	
467	338	1476	30	41	287	119	708	
518	125	1844	16	6	560	289	12620	
518	175	1844	21	12	400	206	4599	
518	325	1844	28	41	215	111	717	
574	108	2273	13	4,4	620	395	23078	
574	189	2273	21	14	354	225	4303	
576	336	2282	29	40	279	179	1077	
678	116	3222	12	4,3	645	581	29497	
678	174	3222	17	9,8	430	388	8740	
680	330	3232	26	34	316	286	1791	
785	96	4353	8,6	2,4	1134	1381	102304	
785	192	4353	16	9,8	567	690	12788	
785	320	4353	22	27	340	415	2761	

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht liberschreiten.

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP AFN 16... PN 16

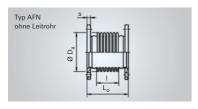

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführuna	Baulänge	Gew	richt	Flan	sch ²
weite	aufnahme 1) nominal	AFN 16	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Blattdicke
DN	2 δ _N	-	-	-	L,	G	G	PN	s
-	mm	-	-	-	mm	kg	kg	-	mm
50	22	.0050.022.0	422148	422183	142	6	6	16	20
50	42	.0050.042.0	422149	422184	231	7	7	16	20
65	28	.0065.028.0	422150	422185	148	7	7	16	20
65	48	.0065.048.0	422151	422186	220	8	9	16	20
80	23	.0080.023.0	422152	422187	148	8	8	16	20
80	50	.0080.050.0	422153	422188	220	9	10	16	20
100	31	.0100.031.0	422154	422189	155	10	10	16	22
100	53	.0100.053.0	422155	422190	230	12	13	16	22
125	21	.0125.021.0	422156	422191	142	12	12	16	22
125	42	.0125.042.0	422157	422192	184	13	13	16	22
125	59	.0125.059.0	422158	422193	244	15	16	16	22
150	24	.0150.024.0	422159	422194	147	16	16	16	24
150	48	.0150.048.0	422160	422195	192	16	17	16	24
150	66	.0150.066.0	422161	422196	246	19	20	16	24
200	30	.0200.030.0	422162	422197	158	23	23	16	26
200	60	.0200.060.0	422163	422198	212	25	26	16	26
200	97	.0200.097.0	422164	422199	374	34	36	16	26
250	32	.0250.032.0	422165	422200	193	33	34	16	29
250	56	.0250.056.0	422166	422202	250	35	37	16	29
250	103	.0250.103.0	422167	422203	377	46	48	16	29

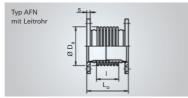
	Balg			saufnahme 1) ninal		Federrate	
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral
D _a	ı	Α	2 α _N	2λ _N	Cδ	C _{\alpha}	C _{λ.}
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm
89	54	46	28	5,2	143	1,9	430
91	143	47,2	40	26	149	2	66
108	60	69,4	27	5,9	124	2,4	457
110	132	70,9	37	22	133	2,7	103
122	60	89,9	22	4,3	273	6,9	1302
123	132	90,8	35	20	147	3,8	146
150	65	139	23	5	223	8,8	1400
152	140	141	33	18	192	7,7	264
172	42	185	15	1,9	346	18	6932
172	84	185	25	7,7	173	9	867
174	144	187	31	18	196	10	338
203	45	264	14	2	339	25	8455
203	90	264	24	7,8	169	13	1054
205	144	267	29	17	193	15	475
260	54	441	14	2,3	508	63	14678
260	108	441	24	9,1	254	31	1835
262	270	445	29	37	271	34	316
318	76	674	12	2,8	634	120	14135
318	133	674	19	8,5	362	69	2635
320	260	679	27	30	296	57	568

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 %

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP AFN 16... PN 16

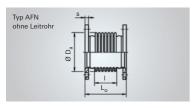

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Baulänge	Gew c	richt a.	Flan	sch ²
	aufnahme 1) nominal	AFN 16	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Blattdicke
DN	2 δ _N	-	-	-	L.	G	G	PN	s
_	mm	-	-	-	mm	kg	kg	-	mm
300	30	.0300.030.0	422168	422204	186	44	46	16	32
300	80	.0300.080.0	422169	422205	291	50	54	16	32
300	120	.0300.120.0	422170	422206	468	72	78	16	32
350	30	.0350.030.0	422171	422207	192	63	65	16	35
350	80	.0350.080.0	422172	422208	297	70	74	16	35
350	130	.0350.130.0	422173	422209	441	91	97	16	35
400	48	.0400.048.0	422174	422210	249	88	91	16	38
400	84	.0400.084.0	422175	422211	327	97	102	16	38
400	132	.0400.132.0	422176	422212	431	109	116	16	38
450	52	.0450.052.0	422177	422213	257	111	114	16	42
450	91	.0450.091.0	422178	422214	335	122	127	16	42
450	143	.0450.143.0	422179	422215	439	136	144	16	42
500	48	.0500.048.0	422180	422216	245	146	149	16	46
500	96	.0500.096.0	422181	422217	329	159	165	16	46
500	144	.0500.144.0	422182	422218	413	171	179	16	46

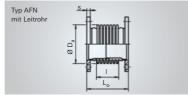

	Balg			saufnahme 1) ninal		Federrate	angular lateral cα c₂ Nm/grd N/mm 246 42077 92 2220 86 489 288 49455 108 2611 106 736 388 24342 222 4544 141 1172 491 30826	
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral	
D _a	- 1	Α	2 α _N	2λ _N	C _δ	C _α	C _λ	
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm	
374	63	940	9,6	1,8	930	246	42077	
374	168	940	22	13	349	92	2220	
376	345	946	24	40	322	86	489	
408	63	1128	8,8	1,7	911	288	49455	
408	168	1128	20	12	342	108	2611	
412	312	1140	25	35	329	106	736	
467	104	1476	12	3,8	934	388	24342	
467	182	1476	19	12	534	222	4544	
467	286	1476	24	29	340	141	1172	
520	104	1851	12	3,7	943	491	30826	
520	182	1851	19	11	539	280	5753	
520	286	1851	23	28	343	178	1483	
576	84	2282	9,9	2,5	1117	715	68986	
576	168	2282	18	10	558	357	8616	
576	252	2282	23	22	372	238	2553	

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP AFN 25... PN 25


Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Baulänge		richt a.	Flan	sch ²
	aufnahme 1) nominal	AFN 25	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Blattdicke
DN	2 δ _N	-	-	-	L _o	G	G	PN	s
-	mm	-	-	-	mm	kg	kg	-	mm
50	13	.0050.013.0	422219	422248	128	6	6	40	20
50	29	.0050.029.0	422220	422249	187	6	7	40	20
65	17	.0065.017.0	422221	422250	134	8	8	40	22
65	40	.0065.040.0	422222	422251	222	9	10	40	22
80	23	.0080.023.0	422223	422252	152	10	10	40	24
80	42	.0080.042.0	422224	422253	222	11	12	40	24
100	23	.0100.023.0	422225	422254	146	13	14	40	26
100	48	.0100.048.0	422227	422255	220	15	16	40	26
125	26	.0125.026.0	422228	422256	169	19	19	40	28
125	52	.0125.052.0	422230	422257	233	20	21	40	28
150	29	.0150.029.0	422231	422258	173	23	24	40	30
150	58	.0150.058.0	422232	422259	237	25	26	40	30
200	26	.0200.026.0	422233	422260	185	33	34	25	32
200	46	.0200.046.0	422234	422261	239	35	36	25	32
200	71	.0200.071.0	422235	422262	311	40	41	25	32
250	24	.0250.024.0	422236	422263	189	46	47	25	35
250	48	.0250.048.0	422237	422264	249	49	51	25	35
250	79	.0250.079.0	422238	422265	329	54	56	25	35
300	27	.0300.027.0	422239	422266	201	60	62	25	38
300	55	.0300.055.0	422240	422267	267	65	67	25	38
300	82	.0300.082.0	422241	422268	333	69	73	25	38


	Balg			saufnahme 1) ninal		Federrate	
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral
D _a	- 1	Α	2 α _N	2 λ _N	C _δ	C _{cc}	C _λ
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm
90	40	46,6	19	2,3	391	5,1	2173
91	99	47,2	32	12	215	2,8	198
109	44	70,1	19	2,6	334	6,5	2311
111	132	71,6	33	18	212	4,2	166
123	60	90,8	22	4,2	323	8,1	1555
125	130	92,5	32	17	217	5,6	227
151	52	140	18	3	334	13	3302
152	126	141	30	15	213	8,3	361
174	64	187	18	3,6	442	23	3864
174	128	187	29	14	221	12	483
205	64	267	17	3,4	434	32	5410
205	128	267	27	14	217	16	676
261	72	443	12	2,6	843	104	13759
261	126	443	18	8	482	59	2569
262	198	445	23	20	370	46	802
320	60	679	9	1,6	1281	242	46135
320	120	679	16	6,5	640	121	5762
320	200	679	21	18	384	72	1245
374	66	940	8,7	1,7	1186	310	48892
374	132	940	16	7	593	155	6112
374	198	940	19	16	395	103	1809

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht führescheiten.

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP AFN 25... PN 25

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Baulänge	Gew c	richt a.	Flan	Flansch ²	
	aufnahme 1) nominal	AFN 25	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Bohrbild gemäß EN 1092	Blattdicke	
DN	2 δ _N	-	-	-	L _o	G	G	PN	s	
-	mm	-	-	-	mm	kg	kg	-	mm	
350	30	.0350.030.0	422242	422269	215	94	96	25	42	
350	50	.0350.050.0	422243	422270	263	99	102	25	42	
350	80	.0350.080.0	422244	422271	335	106	111	25	42	
400	32	.0400.032.0	422245	422272	265	132	135	25	48	
400	56	.0400.056.0	422246	422273	340	142	146	25	48	
400	96	.0400.096.0	422247	422274	489	166	173	25	48	

	Balg			saufnahme 1) ninal		Federrate	
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral
D _a	- 1	Α	2 α _N	2λ _N	C δ	C _{\alpha}	C _λ
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm
412	72	1140	8,8	1,9	1425	451	59854
412	120	1140	14	5,2	855	271	12928
412	192	1140	19	13	534	169	3154
466	100	1473	8,1	2,5	1908	780	53659
466	175	1473	13	7,5	1090	446	10010
469	324	1483	18	24	689	284	1859

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

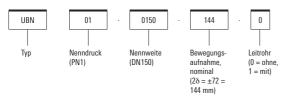
²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

UNIVERSAL-KOMPENSATOREN FÜR NIEDERDRUCK (ABGAS) MIT FLANSCHEN TYP UBN, UFN

Typenbezeichnung

Die Typenbezeichnung besteht aus 2 Teilen

- 1. Typenreihe, definiert durch 3 Buchstaben
- 2. Nenngröße, definiert durch 10 Ziffern


Beispiel

Typ UBN: HYDRA Universal-Kompensator mit drehbaren Flanschen Typ UFN: HYDRA Universal-Kompensator mit glatten Festflanschen

Standardausführung/Werkstoffe

Balg vielwandig aus 1.4541 Flansch aus S235JRG2 (1.0038) oder aus P250GH (1.0460) Betriebstemperatur: bis 550 °C

Typenbezeichnung (beispielhaft)

Bestelltext

Bei Bestellung bitte angeben:

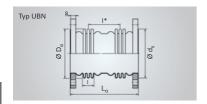
Bei Standardausführung

■ Typenbezeichnung oder Bestellnummer

Mit Werkstoffvarianten

- Typenbezeichnung
- Angabe der Werkstoffe

Die Kompensatoren für Niederdruck (Abgas) sind für den drucklosen Einsatz (PS < 0.5 barü) konzipiert.


Für diesen Betriebszustand ist die Druckgeräterichtlinie (DGRL) nicht anzuwenden.

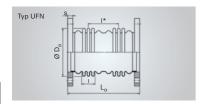
Hinweis

Wir passen den Kompensator Ihren Anforderungen an, wenn Sie uns die vom Standard abweichenden Maße angeben. Auf Wunsch können Flansche auch mit anderen Bohrbildern / Flanschblattdicken geliefert werden. Hierbei ändert sich ggf. die angegebene Baulänge L0.

UNIVERSAL-KOMPENSATOREN FÜR NIEDERDRUCK MIT DREHBAREN FLANSCHEN

TYP UBN 01... PN 1

Nenn- weite	Axiale Bewegungs-	Тур	Bestell- nummer	Baulänge	Gewicht ca.	Balgmitten- abstand		Flansch ²	
	aufnahme 1)) nominal	UBN 01	Standard- ausführung		ou.	ussanu	Bohrbild gemäß EN 1092	Bördel- durch- messer	Blatt- dicke
DN	2 δ _N	-	-	L,	G	l*	PN	d ₅	S
_	mm	-	-	mm	kg	mm	-	mm	mm
50	56	.0050.056.0	425669	392	3,8	257	6	90	16
65	82,8	.0065.083.0	425670	432	5	279	6	107	16
80	95,4	.0080.095.0	425673	446	7	280	6	122	18
100	118,8	.0100.119.0	425674	466	9	291	6	147	18
125	144	.0125.144.0	425675	480	11	286	6	178	20
150	144	.0150.144.0	423511	493	12	299	6	202	20
200	160	.0200.160.0	423512	506	17	292	6	258	22
250	168	.0250.168.0	423513	520	22	293	6	312	24
300	196	.0300.196.0	423514	510	29	269	6	365	24
350	180	.0350.180.0	423515	534	39	302	6	410	26
400	156	.0400.156.0	423516	519	51	266	6	465	28
450	140	.0450.140.0	423517	523	61	282	6	520	30
500	136	.0500.136.0	423518	533	66	310	6	570	30


	Balg			aufnahme 1) ninal		Federrate	
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral
D _a	- 1	Α	2 α _N	2λ _N	C _δ	C _{\alpha}	C _λ
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm
89	63	46	41	154	37	0,9	1,6
107	81	68,7	49	197	28	1,1	1,5
121	90	89,1	49	196	26	1,3	1,8
148	99	137	49	203	24	1,8	2,4
174	104	187	49	204	18	1,9	2,5
203	104	264	42	181	21	3,1	3,8
255	120	432	37	149	23	5,5	7
312	119	661	31	127	27	9,9	12
365	133	916	31	112	26	13	19
400	120	1104	26	109	27	17	20
458	126	1445	20	71	88	71	106
513	110	1825	16	62	97	98	135
569	92	2252	14	62	107	134	155

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

UNIVERSAL-KOMPENSATOREN FÜR NIEDERDRUCK MIT GLATTEN FESTFLANSCHEN

TYP UFN 01... PN 1

Nenn- weite	Axiale Bewegungs-	Тур	Bestell- nummer	Baulänge	Gewicht ca.	Balgmitten- abstand	Flan	sch ²
	aufnahme 1) nominal	UFN 01	Standard- ausführung		o	ussanu	Bohrbild gemäß EN 1092	Blattdicke
DN	2 δ _N	-	-	L _o	G	l*	PN	s
-	mm	-	-	mm	kg	mm	-	mm
50	56	.0050.056.0	425685	404	3,7	257	6	16
65	83	.0065.083.0	425686	444	4,9	279	6	16
80	95	.0080.095.0	425687	456	7	280	6	18
100	119	.0100.119.0	425688	476	8	291	6	18
125	144	.0125.144.0	425689	488	11	286	6	20
150	144	.0150.144.0	423527	501	12	299	6	20
200	160	.0200.160.0	423528	512	17	292	6	22
250	168	.0250.168.0	423529	524	22	293	6	24
300	196	.0300.196.0	423530	514	29	269	6	24
350	180	.0350.180.0	423531	536	39	302	6	26
400	156	.0400.156.0	423532	517	51	266	6	28
450	140	.0450.140.0	423533	521	61	282	6	30
500	136	.0500.136.0	423534	531	65	310	6	30

	Balg			saufnahme 1) ninal	Federrate			
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral	
D _a	ı	Α	2 α _N	2λ _N	C _δ	C _{cc}	C _λ	
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm	
89	63	46	41	154	37	0,9	1,6	
107	81	68,7	49	197	28	1,1	1,5	
121	90	89,1	49	196	26	1,3	1,8	
148	99	137	49	203	24	1,8	2,4	
174	104	187	49	204	18	1,9	2,5	
203	104	264	42	181	21	3,1	3,8	
255	120	432	37	149	23	5,5	7	
312	119	661	31	127	27	9,9	12	
365	133	916	31	112	26	13	19	
400	120	1104	26	109	27	17	20	
458	126	1445	20	71	88	71	106	
513	110	1825	16	62	97	98	135	
569	92	2252	14	62	107	134	155	

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überscheiten.

 158
 WITZENMANN
 1501de/19/10/23/pdf
 HYDRA
 HYDRA
 1501de/19/10/23/pdf
 WITZENMANN
 15

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

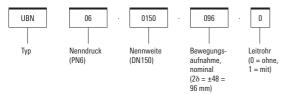
06

UNIVERSAL-KOMPENSATOREN MIT FLANSCHEN TYP UBN, UFN

Typenbezeichnung

Die Typenbezeichnung besteht aus 2 Teilen

- 1. Typenreihe, definiert durch 3 Buchstaben
- 2. Nenngröße, definiert durch 10 Ziffern


Beispiel

Typ UBN: HYDRA Universal-Kompensator mit drehbaren Flanschen Typ UFN: HYDRA Universal-Kompensator mit glatten Festflanschen

Standardausführung/Werkstoffe

Balg vielwandig aus 1.4541 Flansch aus S235JRG2 (1.0038) oder P250GH (1.0460) Betriebstemperatur: bis 300 °C / 450 °C

Typenbezeichnung (beispielhaft)

Bestelltext nach Richtlinie 2014/68/EU "Druckgeräterichtlinie"

Bei Bestellung bitte angeben:

Bei Standardausführung

■ Typenbezeichnung oder Bestellnummer

Mit Werkstoffvarianten

- Typenbezeichnung
- Angabe der Werkstoffe

Für die Prüfung und Dokumentation nach Druckgeräterichtlinie werden folgende Angaben benötigt:

Druckgeräteart nach Art. 1 & 2:

- Behälter Volumen V [I] _
- Rohrleitung Nennweite DN _____

Mediumeigenschaft nach Art. 13:

- Gruppe 1 gefährlich
- Gruppe 2 andere

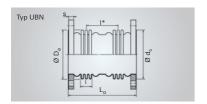
Mediumzustand:

- Gasförmig oder flüssig, wenn PD > 0.5 bar
- Flüssig, wenn PD ≤ 0.5 bar

Auslegungsdaten:

- Max. zul. Druck PS [bar]
- Max./min. zul. Temp. TS [°C]
- Prüfdruck PT [bar] _____

Optional:

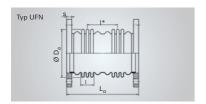

■ Kategorie _____

Hinweis

Wir passen den Kompensator an Ihre Anforderungen an, wenn Sie uns die vom Standard abweichenden Maße angeben. Auf Wunsch können Flansche auch mit anderen Bohrbildern / Flanschblattdicken geliefert werden. Hierbei ändert sich ggf. die angegebene Baulänge L0.

UNIVERSAL-KOMPENSATOREN MIT DREHBAREN FLANSCHEN

TYP UBN 06... PN 6

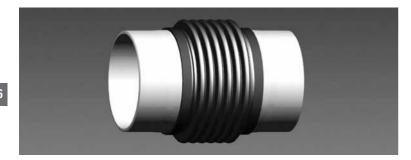

Nenn- weite	Axiale Bewegungs-	Тур	Bestell- nummer	Baulänge	Gewicht ca.	Balgmitten- abstand		Flansch ²	
	aufnahme 1) nominal	UBN 06	Standard- ausführung				Bohrbild gemäß EN 1092	Bördel- durch- messer	Blatt- dicke
DN	2 δ _N	-	-	L,	G	I*	PN	d ₅	s
-	mm	-	-	mm	kg	mm	-	mm	mm
50	44	.0050.044.0	425677	343	4,1	216	6	90	16
65	55	.0065.055.0	425678	343	5	210	6	107	16
80	61	.0080.061.0	425680	367	8	224	6	122	18
100	73	.0100.073.0	425681	388	10	232	6	147	18
125	84	.0125.084.0	425683	416	13	240	6	178	20
150	96	.0150.096.0	423519	433	15	251	6	202	20
200	100	.0200.100.0	423520	474	21	293	6	258	22
250	120	.0250.120.0	423521	414	26	214	6	312	24
300	100	.0300.100.0	423522	434	31	230	6	365	24
350	110	.0350.110.0	423523	444	42	231	6	410	26
400	130	.0400.130.0	423524	465	55	227	6	465	28
450	140	.0450.140.0	423525	489	68	242	6	520	30
500	132	.0500.132.0	423526	499	79	266	6	570	30

	Balg			aufnahme 1) ninal		Federrate	
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral
D _a	ı	Α	2 α _N	2λ _N	C ₈	C _{\alpha}	C _λ
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm
89	54	46	31	102	72	1,8	4,4
108	60	69,4	31	99	62	2,4	6
121	66	89,1	30	102	63	3,1	7
150	78	139	29	99	93	7,2	15
172	84	185	29	101	87	8,9	17
203	90	264	27	101	85	12	22
257	85	436	23	99	96	23	30
316	90	670	22	66	84	31	73
371	95	932	16	50	111	57	118
405	100	1119	15	50	109	68	137
461	110	1456	16	50	144	116	239
514	115	1828	16	51	146	148	269
572	100	2265	14	50	206	259	400

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überscheiden

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP UFN 06... PN 6


Nenn- weite	Axiale Bewegungs-	Тур	Bestell- nummer	Baulänge	Gewicht ca.	Balgmitten- abstand	Flan	sch ²
	aufnahme 1) nominal	UFN 06	Standard- ausführung				Bohrbild gemäß EN 1092	Blattdicke
DN	2 δ _N	-	-	L _o	G	l*	PN	s
-	mm	-	-	mm	kg	mm	-	mm
50	44	.0050.044.0	425690	354	3,9	216	6	16
65	55	.0065.055.0	425691	354	5	210	6	16
80	61	.0080.061.0	425693	376	7	224	6	18
100	73	.0100.073.0	425694	396	10	232	6	18
125	84	.0125.084.0	425695	422	13	240	6	20
150	96	.0150.096.0	423535	439	15	251	6	20
200	100	.0200.100.0	423536	478	20	293	6	22
250	120	.0250.120.0	423537	416	26	214	6	24
300	100	.0300.100.0	423538	437	31	230	6	24
350	110	.0350.110.0	423539	445	42	231	6	26
400	130	.0400.130.0	423540	462	54	227	6	28
450	140	.0450.140.0	423541	486	66	242	6	30
500	132	.0500.132.0	423542	495	77	266	6	30

	Balg			saufnahme 1) ninal	Federrate			
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral	
D _a	ı	Α	2a _N	2λ _N	C _δ	C _{\alpha}	C _λ	
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm	
89	54	46	31	102	72	1,8	4,4	
108	60	69,4	31	99	62	2,4	6	
121	66	89,1	30	102	63	3,1	7	
150	78	139	29	99	93	7,2	15	
172	84	185	29	101	87	8,9	17	
203	90	264	27	101	85	12	22	
257	85	436	23	99	96	23	30	
316	90	670	22	66	84	31	73	
371	95	932	16	50	111	57	118	
405	100	1119	15	50	109	68	137	
461	110	1456	16	50	144	116	239	
514	115	1828	16	51	146	148	269	
572	100	2265	14	50	206	259	400	

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

AXIAL-KOMPENSATOREN FÜR NIEDERDRUCK (ABGAS) MIT SCHWEISSENDEN TYP ARN

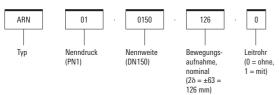
Typenbezeichnung

Die Typenbezeichnung besteht aus 2 Teilen

- 1. Typenreihe, definiert durch 3 Buchstaben
- 2. Nenngröße, definiert durch 10 Ziffern

Beispiel

Typ ARN: HYDRA Axial-Kompensator mit Schweißenden


Standardausführung/Werkstoffe

Balg vielwandig aus 1.4541

Schweißende aus P235TR1 (1.0254) oder P265GH (1.0425)

Betriebstemperatur: bis 550 °C

Typenbezeichnung (beispielhaft)

Bestelltext

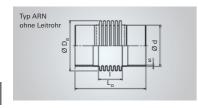
Bei Bestellung bitte angeben:

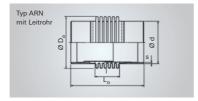
Bei Standardausführung

■ Typenbezeichnung oder Bestellnummer

Mit Werkstoffvarianten

- Typenbezeichnung
- Angabe der Werkstoffe

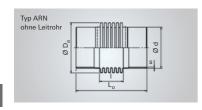

Die Kompensatoren für Niederdruck (Abgas) sind für den drucklosen Einsatz (PS < 0.5 barü) konzipiert.

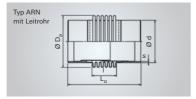

Für diesen Betriebszustand ist die Druckgeräterichtlinie (DGRL) nicht anzuwenden.

Hinweis

Wir passen den Kompensator Ihren Anforderungen an, wenn Sie uns die vom Standard abweichenden Maße angeben.

TYP ARN 01... PN 1

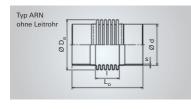


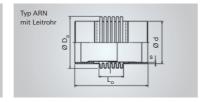

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Baulänge		richt a.	Schwe	ißende
	aufnahme 1) nominal	ARN 01	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Außen- durch- messer	Wand- dicke
DN	2 δ _N	-	-	-	L _o	G	G	d	s
_	mm	-	-	-	mm	kg	kg	-	mm
50	24	.0050.024.0	417751	417842	214	1	1,2	60,3	2,9
50	56	.0050.056.0	417753	417843	286	1,2	1,5	60,3	2,9
50	80	.0050.080.0	417754	417844	340	1,4	1,8	60,3	2,9
65	28	.0065.028.0	417755	417845	214	1,5	1,7	76,1	2,9
65	64	.0065.064.0	417756	417846	286	1,8	2,2	76,1	2,9
65	92	.0065.092.0	417757	417847	340	2	2,6	76,1	2,9
80	37	.0080.037.0	417758	417848	230	1,8	2,1	88,9	3,2
80	74	.0080.074.0	417759	417849	300	2,1	2,7	88,9	3,2
80	106	.0080.106.0	417760	417850	360	2,4	3,1	88,9	3,2
100	40	.0100.040.0	417761	417851	226	2,3	2,7	114,3	3,6
100	86	.0100.086.0	417762	417852	303	2,7	3,5	114,3	3,6
100	119	.0100.119.0	417763	417853	358	3,1	4,1	114,3	3,6
125	63	.0125.063.0	417764	417854	251	2,9	3,5	139,7	4
125	126	.0125.126.0	417765	417855	342	3,6	4,7	139,7	4
125	180	.0125.180.0	417766	417856	420	4,1	6	139,7	4
150	63	.0150.063.0	417767	417857	251	3,5	4,2	168,3	4
150	126	.0150.126.0	417768	417858	342	4,3	6	168,3	4
150	180	.0150.180.0	417769	417860	420	5	7	168,3	4
200	70	.0200.070.0	417770	417861	265	4,6	6	219,1	4,5
200	140	.0200.140.0	417771	417862	370	6	8	219,1	4,5
200	200	.0200.200.0	417772	417863	460	7	9	219,1	4,5

	Balg			aufnahme 1) ninal	allseitige Schwin-		Federrate			equenz lalges
Außen- durch- messer	ge- wellte Länge	wirksamer Quer- schnitt	angular	lateral	gungen	axial	angular	lateral	axial	radial
D _a	- 1	Α	2 α _N	2λ _N	â	Cδ	C _α	C _λ	ωa	$\omega_{\rm r}$
mm	mm	cm ²	grad	mm	mm	N/mm	Nm/grd	N/mm	Hz	Hz
89	54	46	36	5,6	0,5	87	1,1	259	350	1250
89	126	46	78	31	1	37	0,5	20	150	230
89	180	46	102	63	1	26	0,3	7	105	110
107	54	68,7	33	5,3	0,5	85	1,6	378	290	1280
107	126	68,7	73	29	1	36	0,7	30	125	235
107	180	68,7	96	59	1	25	0,5	10	90	115
121	70	89,1	39	8,1	0,5	67	1,7	233	220	840
121	140	89,1	73	33	1	34	0,8	29	110	210
121	200	89,1	96	66	1	24	0,6	9,8	75	105
148	66	137	34	6,6	0,5	73	2,8	432	210	1050
148	143	137	68	31	1	34	1,3	42	100	225
148	198	137	87	59	1	24	0,9	16	70	115
174	91	187	45	12	0,5	41	2,1	177	120	520
174	182	187	83	49	1	21	1,1	23	60	130
174	260	187	103	101	1	14	0,7	7,4	40	65
203	91	264	38	10	1	48	3,5	293	120	610
203	182	264	69	42	1	24	1,8	37	60	150
203	260	264	86	85	1	17	1,2	13	40	75
255	105	432	33	10	1	53	6,4	397	110	600
255	210	432	59	42	1	27	3,2	51	55	150
255	300	432	72	85	1	19	2,3	17	40	75

1) Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

TYP ARN 01... PN 1

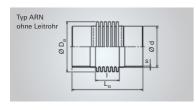


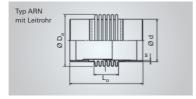

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Baulänge	Gew c	vicht a.	Schwe	ißende
	aufnahme 1) nominal	ARN 01	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Außen- durch- messer	Wand- dicke
DN	2 δ _N	-	-	-	L _o	G	G	d	s
_	mm	-	-	-	mm	kg	kg	-	mm
250	72	.0250.072.0	417773	417864	262	6	7	273	5
250	144	.0250.144.0	417774	417865	364	7	9	273	5
250	216	.0250.216.0	417775	417867	466	8	12	273	5
300	70	.0300.070.0	417777	417868	255	7	9	323,9	5,6
300	154	.0300.154.0	417778	417869	369	8	13	323,9	5,6
300	210	.0300.210.0	417779	417870	445	9	15	323,9	5,6
350	75	.0350.075.0	417780	417871	260	7	10	355,6	8
350	150	.0350.150.0	417781	417872	360	9	14	355,6	8
350	210	.0350.210.0	417782	417873	440	10	16	355,6	8
400	65	.0400.065.0	417783	417874	265	10	13	406,4	8,8
400	117	.0400.117.0	417784	417875	349	13	18	406,4	8,8
400	195	.0400.195.0	417785	417876	475	17	25	406,4	8,8
450	56	.0450.056.0	417786	417877	248	11	14	457	4
450	140	.0450.140.0	417787	417878	380	16	22	457	4
450	196	.0450.196.0	417789	417879	468	19	27	457	4
500	68	.0500.068.0	417790	417880	292	14	18	508	4
500	136	.0500.136.0	417791	417881	384	18	25	508	4
500	221	.0500.221.0	417792	417882	499	23	33	508	4
600	76	.0600.076.0	417793	417883	304	17	22	610	4
600	152	.0600.152.0	417794	417884	408	22	32	610	4
600	228	.0600.228.0	417795	417885	512	27	40	610	4

	Balg			aufnahme 1) ninal	allseitige Schwin-		Federrate		Eigenfr des B	equenz alges
Außen- durch- messer	ge- wellte Länge	wirksamer Quer- schnitt	angular	lateral	gungen	axial	angular	lateral	axial	radial
D _a	I	Α	2 α _N	2λ _N	â	Cδ	Cα	C _λ	ω _a	$\omega_{\rm r}$
mm	mm	cm ²	grad	mm	mm	N/mm	Nm/grd	N/mm	Hz	Hz
312	102	661	28	8,4	0,7	62	11	752	110	780
312	204	661	50	34	1	31	5,7	94	55	190
312	306	661	64	76	1	21	3,9	28	35	90
365	95	916	23	6,5	0,5	73	19	1415	110	1030
365	209	916	46	31	1	33	8,4	132	50	210
365	285	916	56	58	1	24	6,1	52	40	115
400	100	1104	22	6,7	0,5	66	20	1392	100	950
400	200	1104	41	27	1	33	10	174	50	240
400	280	1104	52	52	1	24	7,4	62	35	120
458	105	1445	17	5,3	0,5	212	85	5283	120	1260
458	189	1445	30	17	1	118	47	904	70	390
458	315	1445	45	48	1	71	29	195	40	140
513	88	1825	13	3,4	0,3	243	123	10935	130	1850
513	220	1825	31	21	1	97	49	698	55	300
513	308	1825	41	42	1	70	35	253	40	150
569	92	2252	14	3,9	0,3	215	135	10875	115	1690
569	184	2252	28	16	1	107	67	1359	55	420
569	299	2252	42	41	1	66	41	318	35	160
674	104	3202	14	4,1	0,3	215	191	12099	100	1570
674	208	3202	26	17	1	107	95	1512	50	390
674	312	3202	36	37	1	72	64	446	35	175

1) Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

TYP ARN 01... PN 1




Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Baulänge		richt a.	Schwe	ißende
	aufnahme 1) nominal	ARN 01	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Außen- durch- messer	Wand- dicke
DN	2 δ _N	-	-	-	L _o	G	G	d	s
-	mm	-	-	-	mm	kg	kg	-	mm
700	80	.0700.080.0	417796	417886	312	21	27	711	4
700	140	.0700.140.0	417797	417887	396	26	36	711	4
700	220	.0700.220.0	417798	417888	508	32	46	711	4
800	84	.0800.084.0	417799	417889	316	24	33	813	4
800	147	.0800.147.0	417800	417890	403	29	42	813	4
800	231	.0800.231.0	417801	417891	519	37	54	813	4
900	84	.0900.084.0	417802	417892	320	27	38	914	4
900	168	.0900.168.0	417805	417893	440	36	52	914	4
900	231	.0900.231.0	417807	417894	530	43	62	914	4
1000	72	.1000.072.0	417808	417895	296	28	36	1016	4
1000	144	.1000.144.0	417809	417896	392	35	51	1016	4
1000	240	.1000.240.0	417811	417898	520	45	67	1016	4
1200	72	.1200.072.0	417812	417899	293	34	46	1220	4
1200	144	.1200.144.0	417813	417900	386	43	67	1220	4
1200	240	.1200.240.0	417814	417901	510	55	89	1220	4
1400	48	.1400.048.0	417815	417902	304	39	53	1420	4
1400	108	.1400.108.0	417816	417903	434	51	80	1420	4
1400	180	.1400.180.0	417817	417904	590	65	109	1420	4
1600	48	.1600.048.0	417818	417905	304	44	61	1620	4
1600	108	.1600.108.0	417819	417906	434	58	92	1620	4
1600	180	.1600.180.0	417820	417907	590	75	124	1620	4

			-							
	Balg			aufnahme 1) ninal	allseitige Schwin-		Federrate		Eigenfr des B	equenz alges
Außen- durch- messer	ge- wellte Länge	wirksamer Quer- schnitt	angular	lateral	gungen	axial	angular	lateral	axial	radial
D _a	- 1	Α	2 α _N	2λ _N	â	Cδ	\mathbf{C}_{α}	C _{).}	ω _a	$\omega_{\rm r}$
mm	mm	cm ²	grad	mm	mm	N/mm	Nm/grd	N/mm	Hz	Hz
780	112	4324	12	4	0,3	203	244	13365	90	1480
780	196	4324	21	12	1	116	139	2494	50	480
780	308	4324	30	30	1	74	89	644	30	195
882	116	5588	11	3,9	0,3	220	341	17449	85	1570
882	203	5588	19	12	1	126	196	3263	50	510
882	319	5588	28	29	1	80	124	839	30	210
992	120	7133	9,9	3,5	0,2	238	472	22421	80	1650
992	240	7133	19	14	1	119	236	2815	40	410
992	330	7133	25	27	1	86	170	1076	30	220
1095	96	8750	7,7	2,2	0,2	335	814	60745	105	2940
1095	192	8750	15	8,7	0,7	168	408	7570	50	740
1095	320	8750	23	24	1	101	245	1632	30	265
1295	93	12331	6,5	1,8	0,1	331	1134	89855	95	3210
1295	186	12331	13	7,1	0,6	165	565	11232	45	800
1295	310	12331	20	20	1	99	339	2426	30	290
1472	104	16377	3,8	1,2	0,1	932	4190	266329	150	5320
1472	234	16377	8,3	5,8	0,5	414	1865	23362	70	1050
1472	390	16377	13	16	1	249	1119	5038	40	380
1672	104	21227	3,3	1	0,1	1056	6168	391692	150	6040
1672	234	21227	7,3	5,1	0,5	470	2742	34354	70	1200
1672	390	21227	12	14	1	282	1645	7437	40	430

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

TYP ARN 01... PN 1

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Baulänge		vicht a.	Schwe	ißende
	aufnahme 1) nominal	ARN 01	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Außen- durch- messer	Wand- dicke
DN	2 δ _N	-	-	-	L _o	G	G	d	s
-	mm	-	-	-	mm	kg	kg	-	mm
1800	48	.1800.048.0	417821	417908	304	49	68	1820	4
1800	108	.1800.108.0	417822	417909	434	65	103	1820	4
1800	180	.1800.180.0	417823	417910	590	84	140	1820	4
2000	48	.2000.048.0	417824	417911	304	55	76	2020	4
2000	108	.2000.108.0	417825	417912	434	72	115	2020	4
2000	180	.2000.180.0	417826	417913	590	93	155	2020	4
2200	48	.2200.048.0	417827	417914	304	82	105	2220	4
2200	108	.2200.108.0	417828	417915	434	101	149	2220	4
2200	180	.2200.180.0	417829	417917	590	124	194	2220	4
2400	48	.2400.048.0	417830	417918	304	89	114	2420	4
2400	108	.2400.108.0	417831	417919	434	110	163	2420	4
2400	180	.2400.180.0	417832	417920	590	135	211	2420	4
2600	48	.2600.048.0	417833	417921	304	97	124	2620	4
2600	108	.2600.108.0	417834	417922	434	119	176	2620	4
2600	180	.2600.180.0	417835	417923	590	146	228	2620	4
2800	48	.2800.048.0	417836	417924	304	104	133	2820	4
2800	108	.2800.108.0	417837	417926	434	128	190	2820	4
2800	180	.2800.180.0	417838	417927	590	158	246	2820	4
3000	48	.3000.048.0	417839	417928	304	112	143	3020	4
3000	108	.3000.108.0	417840	417929	434	137	203	3020	4
3000	180	.3000.180.0	417841	417930	590	169	264	3020	4

	Balg			aufnahme 1) ninal	allseitige Schwin-		Federrate	:		requenz Balges
Außen- durch- messer	ge- wellte Länge	wirksamer Quer- schnitt	angular	lateral	gungen	axial	angular	lateral	axial	radial
D _a	- 1	Α	2 α _N	2λ _N	â	Cδ	\mathbf{C}_{α}	C _λ	ω	$\omega_{\rm r}$
mm	mm	cm ²	grad	mm	mm	N/mm	Nm/grd	N/mm	Hz	Hz
1872	104	26706	3	0,9	0	1180	8672	550794	150	6760
1872	234	26706	6,6	4,6	0,4	524	3858	48345	70	1340
1872	390	26706	10	13	1	315	2315	10463	40	480
2072	104	32813	2,7	0,8	0	1302	11767	747440	150	7480
2072	234	32813	5,9	4,1	0,4	579	5232	65695	70	1480
2072	390	32813	9,5	11	1	347	3136	14174	40	530
2272	104	39549	2,5	0,7	0	1424	15523	986064	150	8200
2272	234	39549	5,4	3,8	0,3	633	6899	86629	70	1620
2272	390	39549	8,8	10	1	380	4142	18722	40	580
2472	104	46913	2,3	0,7	0	1545	20003	1270727	150	8900
2472	234	46913	5	3,4	0,3	687	8887	111595	70	1760
2472	390	46913	8	9,6	1	412	5330	24093	40	630
2672	104	54905	2,1	0,6	0	1667	25256	1604521	150	9620
2672	234	54905	4,6	3,2	0,3	741	11225	140948	70	1900
2672	390	54905	7,4	8,9	0,8	444	6741	30403	40	680
2872	104	63526	1,9	0,6	0	1788	31375	1993293	150	10330
2872	234	63526	4,3	3	0,2	795	13940	175043	65	2040
2872	390	63526	7	8,2	0,8	477	8364	37809	40	740
3072	104	72774	1,8	0,5	0	1909	38389	2438990	150	11050
3072	234	72774	4	2,8	0,2	849	17062	213982	65	2180
3072	390	72774	6,5	7,7	0,7	509	10229	46238	40	790

1) Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

06

AXIAL-KOMPENSATOREN MIT SCHWEISSENDEN TYP ARN

Typenbezeichnung

Die Typenbezeichnung besteht aus 2 Teilen

- 1. Typenreihe, definiert durch 3 Buchstaben
- 2. Nenngröße, definiert durch 10 Ziffern

Beispiel

Typ ARN: HYDRA Axial-Kompensator mit Schweißenden

Standardausführung/Werkstoffe

Balg vielwandig aus 1.4541

Schweißenden bis DN 300: P235GH (1.0345)

Schweißenden ab DN 350: P265GH (1.0425)

Betriebstemperatur: bis 400 °C

Typenbezeichnung (beispielhaft)

Bestelltext nach Richtlinie 2014/68/EU "Druckgeräterichtlinie"

Bei Bestellung bitte angeben:

Bei Standardausführung

■ Typenbezeichnung oder Bestellnummer

Mit Werkstoffvarianten

- Typenbezeichnung
- Angabe der Werkstoffe

Für die Prüfung und Dokumentation nach Druckgeräterichtlinie werden folgende Angaben benötigt:

Druckgeräteart nach Art. 1 & 2:

- Behälter Volumen V [I] _
- Rohrleitung Nennweite DN _____

Mediumeigenschaft nach Art. 13:

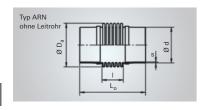
- Gruppe 1 gefährlich
- Gruppe 2 andere

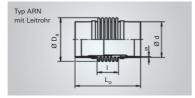
Mediumzustand:

- Gasförmig oder flüssig, wenn PD > 0.5 bar
- Flüssig, wenn PD ≤ 0.5 bar

Auslegungsdaten:

- Max. zul. Druck PS [bar]
- Max./min. zul. Temp. TS [°C]
- Prüfdruck PT [bar] _____

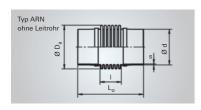

Optional:

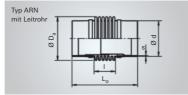

■ Kategorie _____

Hinweis

Wir passen den Kompensator an Ihre Anforderungen an, wenn Sie uns die vom Standard abweichenden Maße angeben.

TYP ARN 02... PN 2,5

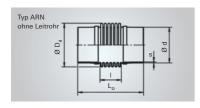


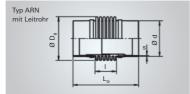


Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Baulänge		vicht a.	Schwe	ißende
	aufnahme 1) nominal	ARN 02	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Außen- durch- messer	Wand- dicke
DN	2 δ _N	-	-	-	L,	G	G	d	s
-	mm	-	-	-	mm	kg	kg	-	mm
50	24	.0050.024.0	417017	417122	214	1	1,2	60,3	2,9
50	44	.0050.044.0	417023	417123	259	1,1	1,3	60,3	2,9
50	70	.0050.070.0	417024	417124	331	1,7	2,1	60,3	2,9
65	28	.0065.028.0	417042	417125	214	1,5	1,7	76,1	2,9
65	60	.0065.060.0	417043	417126	277	1,7	2	76,1	2,9
65	87	.0065.087.0	417044	417127	350	2,4	3	76,1	2,9
80	27	.0080.027.0	417046	417128	210	1,7	2	88,9	3,2
80	64	.0080.064.0	417045	417129	280	2	2,4	88,9	3,2
80	92	.0080.092.0	417047	417130	358	2,7	3,4	88,9	3,2
100	46	.0100.046.0	417048	417131	237	2,3	2,7	114,3	3,6
100	86	.0100.086.0	417049	417132	303	2,7	3,5	114,3	3,6
100	122	.0100.122.0	417050	417133	420	5	7	114,3	3,6
125	45	.0125.045.0	417051	417134	241	2,7	3,2	139,7	4
125	90	.0125.090.0	417052	417135	306	3,2	4,2	139,7	4
125	140	.0125.140.0	417053	417136	456	7	8	139,7	4
150	54	.0150.054.0	417054	417137	254	3,6	4,3	168,3	4
150	99	.0150.099.0	417055	417138	319	4,1	5	168,3	4
150	160	.0150.160.0	417056	417139	476	9	11	168,3	4
200	70	.0200.070.0	417057	417140	285	6	8	219,1	4,5
200	130	.0200.130.0	417058	417141	388	9	11	219,1	4,5
200	190	.0200.190.0	417059	417142	503	13	16	219,1	4,5

	Balg			saufnahme 1) ninal		Federrate	
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral
D _a	ı	А	2 α _N	2 λ _N	C _δ	C _{cc}	C _λ
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm
89	54	46	35	5,6	86	1,1	259
89	99	46	59	19	47	0,6	42
89	171	46	86	52	45	0,6	14
107	54	68,7	33	5,3	84	1,6	378
107	117	68,7	62	25	39	0,7	37
108	190	69,4	81	59	39	0,8	14
121	50	89,1	28	4,1	94	2,3	640
121	120	89,1	58	24	39	1	46
121	198	89,1	76	57	42	1	18
148	77	137	37	9	62	2,4	273
148	143	137	59	31	33	1,3	42
150	260	139	81	79	56	2,2	22
174	65	187	31	6,3	58	3	492
174	130	187	52	25	29	1,5	61
172	280	185	77	85	52	2,7	23
203	78	264	31	7,7	56	4,1	465
203	143	264	48	26	31	2,3	77
203	300	264	72	87	51	3,7	29
255	105	432	31	10	53	6,4	397
256	208	434	48	38	42	5,1	80
257	323	436	65	87	51	6,2	41

1) Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

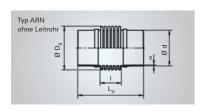


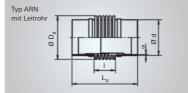

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Baulänge		vicht a.	Schweißende	
	aufnahme 1) nominal	ARN 02	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Außen- durch- messer	Wand- dicke
DN	2 δ _N	-	-	-	L.	G	G	d	s
-	mm	-	-	-	mm	kg	kg	-	mm
250	72	.0250.072.0	417062	417143	282	9	11	273	5
250	144	.0250.144.0	417063	417144	384	12	14	273	5
250	204	.0250.204.0	417064	417145	486	17	21	273	5
300	70	.0300.070.0	417065	417146	279	12	14	323,9	5,6
300	126	.0300.126.0	417066	417147	355	13	17	323,9	5,6
300	210	.0300.210.0	417067	417148	464	21	26	323,9	5,6
350	75	.0350.075.0	417068	417149	284	10	13	355,6	8
350	150	.0350.150.0	417069	417150	384	13	18	355,6	8
350	210	.0350.210.0	417070	417151	478	20	26	355,6	8
400	65	.0400.065.0	417071	417152	289	13	16	406,4	8,8
400	117	.0400.117.0	417072	417153	373	16	21	406,4	8,8
400	195	.0400.195.0	417073	417154	499	20	28	406,4	8,8
450	56	.0450.056.0	417074	417155	272	14	18	457	4
450	140	.0450.140.0	417075	417156	404	19	26	457	4
450	196	.0450.196.0	417076	417157	492	23	31	457	4
500	68	.0500.068.0	417089	417158	320	19	23	508	4
500	136	.0500.136.0	417090	417159	412	23	31	508	4
500	221	.0500.221.0	417091	417160	527	28	39	508	4
600	76	.0600.076.0	417092	417161	332	23	29	610	4
600	152	.0600.152.0	417093	417162	436	28	38	610	4
600	228	.0600.228.0	417094	417163	540	33	47	610	4

	Balg			saufnahme 1) ninal		Federrate	
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral
D _a	ı	Α	2 α _N	2 λ _N	C ₈	C _{cc}	C _{λ.}
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm
312	102	661	27	8,4	62	11	752
315	204	667	47	34	40	7,4	123
316	306	670	64	71	49	9,1	67
365	95	916	22	6,5	73	19	1415
365	171	916	36	21	40	10	239
371	280	932	59	57	52	13	118
400	100	1104	22	6,7	66	20	1392
402	200	1110	39	27	46	14	244
402	294	1110	54	55	60	19	147
458	105	1445	17	5,3	211	85	5283
458	189	1445	28	17	117	47	904
458	315	1445	39	48	70	28	195
513	88	1825	13	3,4	243	123	10935
513	220	1825	29	21	97	49	698
513	308	1825	36	42	69	35	253
569	92	2252	14	3,9	214	134	10875
569	184	2252	26	16	107	67	1359
569	299	2252	37	41	66	41	318
674	104	3202	13	4,1	214	190	12099
674	208	3202	25	17	107	95	1512
674	312	3202	32	37	71	63	446

1) Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

TYP ARN 02... PN 2,5

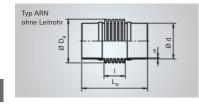


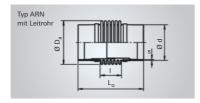

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Baulänge		vicht a.	Schwe	ißende
	aufnahme 1) nominal	ARN 02	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Außen- durch- messer	Wand- dicke
DN	2 δ _N	-	-	-	L _o	G	G	d	s
-	mm	-	-	-	mm	kg	kg	-	mm
700	80	.0700.080.0	417095	417164	340	28	34	711	4
700	140	.0700.140.0	417096	417165	424	33	44	711	4
700	220	.0700.220.0	417097	417166	536	39	54	711	4
800	84	.0800.084.0	417098	417167	348	32	42	813	4
800	147	.0800.147.0	417099	417168	435	37	51	813	4
800	231	.0800.231.0	417100	417169	551	45	63	813	4
900	84	.0900.084.0	417101	417170	352	36	48	914	4
900	168	.0900.168.0	417102	417171	472	45	62	914	4
900	231	.0900.231.0	417103	417172	562	51	72	914	4
1000	72	.1000.072.0	417104	417173	332	38	47	1016	4
1000	144	.1000.144.0	417105	417175	428	45	62	1016	4
1000	240	.1000.240.0	417106	417174	556	55	78	1016	4
1200	72	.1200.072.0	417107	417176	332	62	77	1220	4
1200	144	.1200.144.0	417108	417177	428	76	102	1220	4
1200	240	.1200.240.0	417109	417178	556	94	131	1220	4
1400	48	.1400.048.0	417110	417179	304	66	81	1420	4
1400	108	.1400.108.0	417111	417181	434	78	108	1420	4
1400	180	.1400.180.0	417112	417182	590	93	136	1420	4
1600	48	.1600.048.0	417113	417183	304	76	92	1620	4
1600	108	.1600.108.0	417114	417184	434	89	123	1620	4
1600	180	.1600.180.0	417115	417185	590	106	156	1620	4

	Balg			saufnahme 1) ninal		Federrate	
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral
D _a	ı	Α	2 α _N	2λ _N	C _ô	C _a	C _λ
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm
780	112	4324	12	4	203	244	13365
780	196	4324	20	12	116	139	2494
780	308	4324	27	30	74	89	644
882	116	5588	11	3,9	220	341	17449
882	203	5588	18	12	126	196	3263
882	319	5588	25	29	80	124	839
992	120	7133	9,8	3,5	237	470	22421
992	240	7133	18	14	119	236	2815
992	330	7133	22	27	86	170	1076
1095	96	8750	7,7	2,2	335	814	60745
1095	192	8750	14	8,7	167	406	7570
1095	320	8750	21	24	100	243	1632
1295	96	12331	6,5	1,8	511	1750	130579
1295	192	12331	13	7,4	255	873	16290
1295	320	12331	19	20	153	524	3519
1472	104	16377	3,8	1,2	921	4190	266329
1472	234	16377	8,1	5,8	409	1861	23362
1472	390	16377	12	16	245	1115	5038
1672	104	21227	3,3	1	1045	6162	391692
1672	234	21227	7,2	5,1	464	2736	34354
1672	390	21227	11	14	279	1645	7437

1) Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

TYP ARN 02... PN 2,5

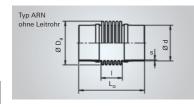


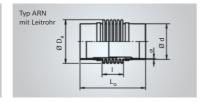

Nenn- weite	Axiale Bewegungs-	Тур	Bestellnummer Standardausführung		Baulänge	Gew c	richt a.	Schweißende	
	aufnahme 1) nominal	ARN 02	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Außen- durch- messer	Wand- dicke
DN	2 δ _N	-	-	-	L _o	G	G	d	s
_	mm	-	-	-	mm	kg	kg	-	mm
1800	48	.1800.048.0	417116	417186	304	85	103	1820	4
1800	108	.1800.108.0	417117	417187	434	100	139	1820	4
1800	180	.1800.180.0	417118	417188	590	119	175	1820	4
2000	48	.2000.048.0	417119	417189	304	94	115	2020	4
2000	108	.2000.108.0	417120	417190	434	111	154	2020	4
2000	180	.2000.180.0	417121	417191	590	132	194	2020	4

	Balg			aufnahme 1) ninal	Federrate			
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral	
D _a	- 1	Α	2 α _N	2 λ _N	C δ	C _{\alpha}	C _{).}	
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm	
1872	104	26706	3	0,9	1168	8665	550794	
1872	234	26706	6,4	4,6	519	3850	48345	
1872	390	26706	9,8	13	312	2315	10463	
2072	104	32813	2,7	0,8	1290	11758	747440	
2072	234	32813	5,8	4,1	574	5232	65695	
2072	390	32813	9	11	344	3136	14174	

1) Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

TYP ARN 06... PN 6

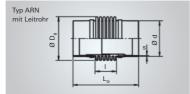



Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Baulänge		vicht a.	Schwe	ißende
	aufnahme 1) nominal	ARN 06	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Außen- durch- messer	Wand- dicke
DN	2 δ _N	-	-	-	L _o	G	G	d	s
-	mm	-	-	-	mm	kg	kg	-	mm
50	24	.0050.024.0	417283	417402	214	1	1	60,3	2,9
50	52	.0050.052.0	417284	417403	286	1,4	1,7	60,3	2,9
65	28	.0065.028.0	417286	417404	214	1,5	1,7	76,1	2,9
65	46	.0065.046.0	417298	417405	250	1,6	1,9	76,1	2,9
65	72	.0065.072.0	417299	417406	358	3,6	4,2	76,1	2,9
80	27	.0080.027.0	417300	417407	210	1,7	2	88,9	3,2
80	48	.0080.048.0	417301	417408	250	1,9	2,2	88,9	3,2
80	77	.0080.077.0	417302	417409	364	4	4,7	88,9	3,2
100	33	.0100.033.0	417303	417410	215	2,2	2,6	114,3	3,6
100	59	.0100.059.0	417304	417411	268	2,8	3,3	114,3	3,6
100	93	.0100.093.0	417305	417412	368	5	6	114,3	3,6
125	36	.0125.036.0	417306	417413	228	2,6	3,1	139,7	4
125	63	.0125.063.0	417307	417414	267	2,9	3,6	139,7	4
125	98	.0125.098.0	417308	417415	386	6	7	139,7	4
150	40	.0150.040.0	417309	417416	246	3,7	4,4	168,3	4
150	88	.0150.088.0	417310	417417	341	6	8	168,3	4
150	124	.0150.124.0	417311	417418	448	11	13	168,3	4
200	40	.0200.040.0	417312	417419	244	6	7	219,1	4,5
200	90	.0200.090.0	417313	417420	333	9	11	219,1	4,5
200	140	.0200.140.0	417314	417422	432	15	18	219,1	4,5

	Balg			saufnahme 1) ninal		Federrate	
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral
D _a	- 1	Α	2α _N	2λ _N	C _ô	C _a	C _λ
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm
89	54	46	33	5,6	86	1,1	259
89	126	46	57	28	61	0,8	34
107	54	68,7	31	5,3	84	1,6	378
107	90	68,7	44	15	50	1	81
110	198	70,9	65	50	88	1,7	30
121	50	89,1	27	4,1	94	2,3	640
121	90	89,1	41	13	52	1,3	109
123	204	90,8	61	48	95	2,4	40
148	55	137	27	4,6	87	3,3	752
149	108	138	43	16	71	2,7	160
151	208	140	59	48	84	3,3	52
174	52	187	25	4	72	3,7	953
174	91	187	39	12	41	2,1	177
173	210	186	55	45	88	4,6	71
202	70	263	23	5,1	116	8,5	1189
203	165	264	45	26	92	6,8	171
205	272	267	56	61	102	7,6	70
256	64	434	19	3,6	138	17	2791
257	153	436	37	19	107	13	380
260	252	441	52	50	109	13	145

1) Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

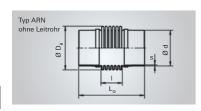
TYP ARN 06... PN 6

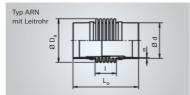

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Baulänge		vicht a.	Schwe	eißende
	aufnahme 1) nominal	ARN 06	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Außen- durch- messer	Wand- dicke
DN	2 δ _N	-	-	-	L,	G	G	d	s
-	mm	-	-	-	mm	kg	kg	-	mm
250	48	.0250.048.0	417315	417423	252	10	11	273	5
250	96	.0250.096.0	417316	417424	324	12	14	273	5
250	144	.0250.144.0	417317	417425	420	19	22	273	5
300	60	.0300.060.0	417318	417426	264	13	16	323,9	5,6
300	120	.0300.120.0	417319	417427	344	16	20	323,9	5,6
300	165	.0300.165.0	417320	417428	426	24	29	323,9	5,6
350	60	.0350.060.0	417321	417429	268	12	14	355,6	8
350	120	.0350.120.0	417322	417430	352	15	20	355,6	8
350	165	.0350.165.0	417331	417431	437	24	29	355,6	8
400	52	.0400.052.0	417333	417432	272	14	17	406,4	8,8
400	117	.0400.117.0	417334	417433	382	19	25	406,4	8,8
400	169	.0400.169.0	417335	417434	483	29	36	406,4	8,8
450	56	.0450.056.0	417336	417435	276	16	19	457	4
450	112	.0450.112.0	417337	417436	368	21	27	457	4
450	182	.0450.182.0	417338	417437	496	33	42	457	4
500	66	.0500.066.0	417339	417438	328	24	28	508	4
500	149	.0500.149.0	417340	417439	453	34	42	508	4
500	215	.0500.215.0	417341	417440	579	56	68	508	4
600	76	.0600.076.0	417342	417441	340	29	35	610	4
600	133	.0600.133.0	417343	417442	424	37	47	610	4
600	216	.0600.216.0	417344	417443	576	66	80	610	4

	Balg			saufnahme 1) ninal		Federrate	
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral
D _a	ı	Α	2a _N	2λ _N	C _δ	C _a	C _{λ.}
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm
316	72	670	18	3,9	209	39	5156
316	144	670	32	16	105	20	648
319	240	677	45	39	109	20	245
371	80	932	19	4,6	182	47	5062
371	160	932	34	19	91	24	633
374	242	940	44	38	104	27	319
402	84	1110	18	4,5	210	65	6311
402	168	1110	31	18	105	32	789
405	253	1119	40	37	119	37	397
461	88	1456	13	3,5	359	145	12887
461	198	1456	25	18	160	65	1135
462	299	1459	32	39	148	60	461
514	92	1828	13	3,6	364	185	15018
514	184	1828	22	14	182	92	1877
515	312	1832	30	39	150	76	539
572	100	2265	14	4,1	411	259	17778
572	225	2265	26	21	183	115	1564
574	351	2273	35	47	191	121	673
677	112	3217	13	4,4	412	368	20180
677	196	3217	21	14	236	211	3774
678	348	3222	30	39	215	192	1092

1) Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

TYP ARN 06... PN 6

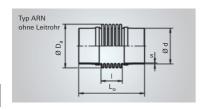


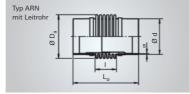


Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Baulänge		richt a.	Schwe	ißende
	aufnahme 1) nominal	ARN 06	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Außen- durch- messer	Wand- dicke
DN	2 δ _N	-	-	-	L,	G	G	d	s
-	mm	-	-	-	mm	kg	kg	-	mm
700	80	.0700.080.0	417345	417444	340	41	48	711	4
700	140	.0700.140.0	417388	417445	424	51	62	711	4
700	220	.0700.220.0	417389	417446	558	82	98	711	4
800	84	.0800.084.0	417390	417447	364	57	67	813	4
800	168	.0800.168.0	417391	417448	496	80	96	813	4
800	231	.0800.231.0	417392	417449	595	97	117	813	4
900	84	.0900.084.0	417393	417450	364	64	76	914	4
900	168	.0900.168.0	417394	417451	496	91	109	914	4
900	231	.0900.231.0	417395	417452	595	111	133	914	4
1000	66	.1000.066.0	417396	417453	341	64	74	1016	4
1000	132	.1000.132.0	417397	417454	446	87	104	1016	4
1000	220	.1000.220.0	417398	417455	586	117	141	1016	4
1200	69	.1200.069.0	417399	417456	341	89	104	1220	5
1200	138	.1200.138.0	417400	417457	446	116	144	1220	5
1200	230	.1200.230.0	417401	417458	586	153	191	1220	5

	Balg			saufnahme 1) ninal		Federrate	
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral
D _a	1	Α	2 α _N	2λ _N	C _δ	C _α	C _λ
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm
780	112	4324	12	4	437	525	28770
780	196	4324	19	12	250	300	5374
783	330	4342	27	33	230	277	1751
887	132	5621	11	4,4	639	998	39372
887	264	5621	20	17	319	498	4914
887	363	5621	24	33	232	362	1890
996	132	7163	9,8	3,9	712	1417	55902
996	264	7163	18	15	356	708	6988
996	363	7163	21	29	259	515	2689
1100	105	8791	7	2,2	970	2369	147726
1100	210	8791	13	8,7	485	1184	18466
1100	350	8791	19	24	291	711	3989
1296	105	12341	6,2	1,9	1088	3730	232590
1296	210	12341	12	7,7	544	1865	29074
1296	350	12341	17	21	327	1121	6291

1) Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

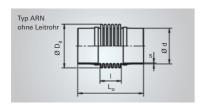


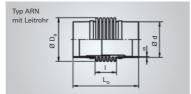

Nenn- weite	Axiale Bewegungs-	Тур	Bestellr Standarda	nummer	Baulänge		vicht a.	Schwe	ißende
weite	aufnahme 1) nominal	ARN 10	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Außen- durch- messer	Wand- dicke
DN	2 δ _N	-	-	-	L _o	G	G	d	s
-	mm	-	-	-	mm	kg	kg	-	mm
50	24	.0050.024.0	417459	417506	214	1	1	60,3	2,9
50	46	.0050.046.0	417460	417507	300	1,9	2,2	60,3	2,9
65	23	.0065.023.0	417461	417508	205	1,4	1,6	76,1	2,9
65	37	.0065.037.0	417462	417509	232	1,5	1,8	76,1	2,9
65	60	.0065.060.0	417463	417510	325	3,2	3,6	76,1	2,9
80	20	.0080.020.0	417464	417511	204	1,7	1,9	88,9	3,2
80	41	.0080.041.0	417465	417512	248	2	2,3	88,9	3,2
80	63	.0080.063.0	417466	417513	328	3,6	4,1	88,9	3,2
100	26	.0100.026.0	417467	417514	208	2,3	2,6	114,3	3,6
100	53	.0100.053.0	417468	417515	256	2,7	3,2	114,3	3,6
100	80	.0100.080.0	417469	417516	370	6	7	114,3	3,6
125	30	.0125.030.0	417470	417517	232	2,8	3,3	139,7	4
125	53	.0125.053.0	417471	417518	274	3,2	3,9	139,7	4
125	85	.0125.085.0	417472	417519	384	7	8	139,7	4
150	32	.0150.032.0	417473	417520	236	4,1	4,7	168,3	4
150	64	.0150.064.0	417474	417521	296	5	6	168,3	4
150	95	.0150.095.0	417475	417522	384	9	11	168,3	4
200	40	.0200.040.0	417476	417523	248	7	8	219,1	4,5
200	80	.0200.080.0	417477	417524	316	9	10	219,1	4,5
200	110	.0200.110.0	417478	417525	378	13	15	219,1	4,5
250	48	.0250.048.0	417479	417526	252	10	11	273	5
250	84	.0250.084.0	417480	417527	306	12	14	273	5
250	130	.0250.130.0	417481	417528	484	24	27	273	5

	Balg			saufnahme 1) ninal		Federrate	
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral
D _a	ı	Α	2α _N	2λ _N	C _δ	C _{cc}	C _{λ.}
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm
89	54	46	31	5,6	86	1,1	259
90	140	46,6	50	28	112	1,4	51
107	45	68,7	26	3,7	101	1,9	654
107	72	68,7	35	9,4	63	1,2	159
110	165	70,9	51	35	106	2,1	53
121	44	89,1	21	2,8	190	4,7	1670
121	88	89,1	36	11	95	2,4	209
123	168	90,8	48	33	115	2,9	71
149	48	138	22	3,2	159	6,1	1817
149	96	138	36	13	80	3,1	229
152	210	141	48	42	128	5	78
171	56	184	21	3,7	147	7,5	1646
171	98	184	32	11	84	4,3	307
174	208	187	46	38	136	7,1	113
203	60	264	19	3,5	254	19	3564
203	120	264	33	14	127	9,3	445
205	208	267	43	36	133	9,9	157
257	68	436	19	3,8	240	29	4318
257	136	436	31	15	120	15	540
260	198	441	41	31	138	17	297
316	72	670	18	3,9	209	39	5156
316	126	670	27	12	120	22	967
319	304	677	32	45	199	37	278

 Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

TYP ARN 10... PN 10

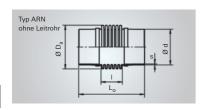


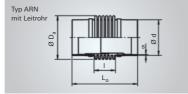

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Baulänge		vicht a.	Schwe	ißende
	aufnahme 1) nominal	ARN 10	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Außen- durch- messer	Wand- dicke
DN	2 δ _N	-	-	-	L,	G	G	d	s
_	mm	-	-	-	mm	kg	kg	-	mm
300	45	.0300.045.0	417482	417529	247	13	15	323,9	5,6
300	90	.0300.090.0	417483	417530	310	16	19	323,9	5,6
300	137	.0300.137.0	417484	417531	514	34	39	323,9	5,6
350	60	.0350.060.0	417486	417532	272	13	15	355,6	8
350	105	.0350.105.0	417487	417533	338	16	20	355,6	8
350	160	.0350.160.0	417488	417534	568	48	55	355,6	8
400	48	.0400.048.0	417489	417535	280	19	22	406,4	8,8
400	120	.0400.120.0	417490	417536	424	32	38	406,4	8,8
400	168	.0400.168.0	417491	417537	548	53	61	406,4	8,8
450	56	.0450.056.0	417492	417538	284	25	29	457	4
450	112	.0450.112.0	417493	417539	384	36	42	457	4
450	168	.0450.168.0	417494	417540	484	46	54	457	4
500	66	.0500.066.0	417495	417541	336	33	38	508	4
500	116	.0500.116.0	417497	417542	417	42	50	508	4
500	192	.0500.192.0	417499	417543	564	71	82	508	4
600	72	.0600.072.0	417500	417544	344	41	46	610	4
600	144	.0600.144.0	417501	417545	460	56	67	610	4
600	216	.0600.216.0	417502	417546	588	89	103	610	4
700	76	.0700.076.0	417503	417547	356	56	63	711	5
700	152	.0700.152.0	417504	417548	484	82	96	711	5
700	209	.0700.209.0	417505	417549	580	102	118	711	5

	Balg			saufnahme 1) ninal		Federrate	
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral
D _a	ı	Α	2 α _N	2λ _N	C _ô	C _a	C _λ
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm
372	63	935	15	2,7	290	75	13045
372	126	935	26	11	145	38	1631
374	330	940	31	44	237	62	391
403	88	1113	17	4,7	250	77	6864
403	154	1113	26	14	143	44	1282
412	384	1140	33	54	267	85	394
464	96	1466	12	3,6	723	294	21961
464	240	1466	26	22	289	118	1405
467	364	1476	32	47	267	109	568
518	100	1844	13	3,9	699	358	24613
518	200	1844	23	15	350	179	3081
518	300	1844	28	35	233	119	912
574	108	2273	14	4,4	620	392	23078
574	189	2273	22	14	354	224	4303
576	336	2282	30	40	279	177	1077
678	116	3222	12	4,3	645	577	29497
678	232	3222	21	17	323	289	3693
680	360	3232	28	40	289	259	1377
785	128	4353	11	4,4	850	1028	43134
785	256	4353	20	17	425	514	5392
785	352	4353	24	33	309	374	2073

1) Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

TYP ARN 16... PN 16


Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Baulänge		vicht a.	Schwe	ißende
	aufnahme 1) nominal	ARN 16	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Außen- durch- messer	Wand- dicke
DN	2 δ _N	-	-	-	L _o	G	G	d	s
-	mm	-	-	-	mm	kg	kg	-	mm
50	22	.0050.022.0	417550	417585	214	1	1	60,3	2,9
50	42	.0050.042.0	417551	417586	303	2,1	2,4	60,3	2,9
65	28	.0065.028.0	417552	417587	220	1,6	1,8	76,1	2,9
65	48	.0065.048.0	417553	417588	292	2,8	3,2	76,1	2,9
80	23	.0080.023.0	417554	417589	220	2,1	2,4	88,9	3,2
80	50	.0080.050.0	417555	417590	292	3,2	3,6	88,9	3,2
100	31	.0100.031.0	417556	417591	225	2,8	3,2	114,3	3,6
100	58	.0100.058.0	417557	417592	314	5	6	114,3	3,6
125	21	.0125.021.0	417558	417593	218	3	3,4	139,7	4
125	42	.0125.042.0	417559	417594	260	3,7	4,3	139,7	4
125	65	.0125.065.0	417560	417595	336	6	7	139,7	4
150	24	.0150.024.0	417561	417596	221	3,8	4,3	168,3	4
150	48	.0150.048.0	417562	417597	266	4,7	6	168,3	4
150	73	.0150.073.0	417563	417598	336	8	9	168,3	4
200	30	.0200.030.0	417564	417599	234	8	8	219,1	4,5
200	60	.0200.060.0	417565	417600	288	10	11	219,1	4,5
200	97	.0200.097.0	417566	417601	450	19	21	219,1	4,5
250	32	.0250.032.0	417567	417602	256	11	12	273	5
250	64	.0250.064.0	417568	417603	332	14	16	273	5
250	103	.0250.103.0	417569	417604	440	23	26	273	5

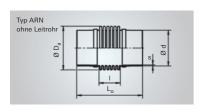

	Balg			saufnahme 1) ninal		Federrate	
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral
D _a	I	Α	2 α _N	2λ _N	C _δ	C _{cc}	C _{).}
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm
89	54	46	29	5,2	143	1,8	430
91	143	47,2	42	26	149	2	66
108	60	69,4	29	5,9	124	2,4	457
110	132	70,9	40	22	133	2,6	103
122	60	89,9	23	4,3	273	6,8	1302
123	132	90,8	38	20	147	3,7	146
150	65	139	24	5	223	8,6	1400
152	154	141	37	22	174	6,8	198
172	42	185	15	1,9	346	18	6932
172	84	185	27	7,7	173	8,9	867
174	160	187	36	22	177	9,2	248
203	45	264	14	2	339	25	8455
203	90	264	25	7,8	169	12	1054
205	160	267	34	21	173	13	345
260	54	441	14	2,3	508	62	14678
260	108	441	26	9,1	254	31	1835
262	270	445	29	37	271	33	316
318	76	674	12	2,8	634	119	14135
318	152	674	20	11	317	59	1767
320	260	679	27	30	296	56	568

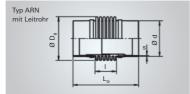
1) Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

 196
 WITZENMANN
 1501de/19/10/23/pdf
 HYDRA
 1501de/19/10/23/pdf
 WITZENMANN
 197

TYP ARN 16... PN 16

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Baulänge		vicht a.	Schwe	ißende
	aufnahme 1) nominal	ARN 16	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Außen- durch- messer	Wand- dicke
DN	2 δ _N	-	-	-	L _o	G	G	d	s
-	mm	-	-	-	mm	kg	kg	-	mm
300	40	.0300.040.0	417570	417605	268	16	18	323,9	5,6
300	80	.0300.080.0	417571	417606	352	21	25	323,9	5,6
300	120	.0300.120.0	417572	417607	529	42	48	323,9	5,6
350	40	.0350.040.0	417573	417608	268	18	20	355,6	8
350	90	.0350.090.0	417574	417609	373	25	29	355,6	8
350	130	.0350.130.0	417575	417611	496	43	50	355,6	8
400	48	.0400.048.0	417576	417612	288	26	29	406,4	8,8
400	96	.0400.096.0	417577	417613	392	38	43	406,4	8,8
400	132	.0400.132.0	417578	417614	470	47	54	406,4	8,8
450	52	.0450.052.0	417579	417615	288	29	33	457	5
450	104	.0450.104.0	417580	417616	392	43	50	457	5
450	143	.0450.143.0	417581	417617	470	54	62	457	5
500	48	.0500.048.0	417582	417618	312	34	37	508	5
500	96	.0500.096.0	417583	417619	396	46	53	508	5
500	144	.0500.144.0	417584	417620	480	59	68	508	5

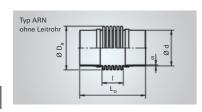

	Balg			saufnahme 1) ninal		Federrate	
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral
D _a	- 1	Α	2 α _N	2 λ _N	C _δ	C _{\alpha}	C _λ
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm
374	84	940	13	3,2	698	182	17764
374	168	940	21	13	349	91	2220
376	345	946	25	40	322	85	489
408	84	1128	12	3	683	214	20856
408	189	1128	20	15	304	95	1834
412	312	1140	26	35	329	104	736
467	104	1476	12	3,8	934	383	24342
467	208	1476	22	15	467	191	3043
467	286	1476	25	29	340	139	1172
520	104	1851	12	3,7	943	485	30826
520	208	1851	21	15	472	243	3857
520	286	1851	24	28	343	176	1483
576	84	2282	9,9	2,5	1117	708	68986
576	168	2282	18	10	558	354	8616
576	252	2282	24	22	372	236	2553

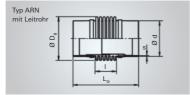

1) Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

 198
 WITZENMANN
 1501de/19/10/23/pdf
 HYDRA
 HYDRA
 1501de/19/10/23/pdf
 WITZENMANN
 199

TYP ARN 25...

AXIAL-KOMPENSATOREN MIT SCHWEISSENDEN



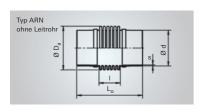

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Baulänge		vicht a.	Schwe	ißende
	aufnahme 1) nominal	ARN 25	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Außen- durch- messer	Wand- dicke
DN	2 δ _N	-	-	-	L,	G	G	d	s
_	mm	-	-	-	mm	kg	kg	-	mm
50	17	.0050.017.0	417621	417650	210	1	1	60,3	2,9
50	32	.0050.032.0	417622	417651	270	1,8	2	60,3	2,9
65	21	.0065.021.0	417623	417652	215	1,8	2	76,1	2,9
65	40	.0065.040.0	417624	417653	292	3,2	3,6	76,1	2,9
80	23	.0080.023.0	417625	417654	220	2,3	2,6	88,9	3,2
80	42	.0080.042.0	417626	417655	290	3,6	4	88,9	3,2
100	23	.0100.023.0	417627	417656	212	2,8	3,1	114,3	3,6
100	48	.0100.048.0	417629	417657	286	4,6	5	114,3	3,6
125	26	.0125.026.0	417630	417658	240	3,9	4,4	139,7	4
125	52	.0125.052.0	417631	417659	304	5	6	139,7	4
150	29	.0150.029.0	417632	417660	240	4,9	6	168,3	4
150	58	.0150.058.0	417633	417661	304	7	8	168,3	4
200	26	.0200.026.0	417635	417662	252	9	9	219,1	4,5
200	52	.0200.052.0	417636	417663	324	11	13	219,1	4,5
200	71	.0200.071.0	417637	417664	378	15	17	219,1	4,5
250	24	.0250.024.0	417638	417665	240	12	13	273	5
250	48	.0250.048.0	417639	417666	300	15	17	273	5
250	79	.0250.079.0	417640	417667	380	20	22	273	5
300	27	.0300.027.0	417641	417668	250	15	17	323,9	5,6
300	55	.0300.055.0	417642	417669	316	20	23	323,9	5,6
300	82	.0300.082.0	417643	417670	382	24	29	323,9	5,6

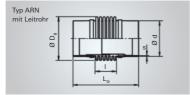
	Balg			saufnahme 1) ninal	Federrate			
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral	
D _a	ı	Α	2 α _N	2 λ _N	C _δ	C _{cc}	C _λ	
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm	
90	50	46,6	22	3,6	313	4	1113	
91	110	47,2	33	15	194	2,5	144	
109	55	70,1	23	4,1	267	5,2	1182	
111	132	71,6	33	18	212	4,2	166	
123	60	90,8	22	4,2	323	8,1	1555	
125	130	92,5	32	17	217	5,6	227	
151	52	140	18	3	334	13	3302	
152	126	141	30	15	213	8,3	361	
174	64	187	18	3,6	442	23	3864	
174	128	187	29	14	221	12	483	
205	64	267	17	3,4	434	32	5410	
205	128	267	27	14	217	16	676	
261	72	443	12	2,6	843	104	13759	
261	144	443	20	11	422	52	1722	
262	198	445	23	20	370	46	802	
320	60	679	9	1,6	1281	242	46135	
320	120	679	16	6,5	640	121	5762	
320	200	679	21	18	384	72	1245	
374	66	940	8,7	1,7	1186	310	48892	
374	132	940	16	7	593	155	6112	
374	198	940	19	16	395	103	1809	

1) Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

TYP ARN 25... PN 25

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Baulänge	Gew c	richt a.	Schweißende	
	aufnahme 1) nominal	ARN 25	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Außen- durch- messer	Wand- dicke
DN	2 δ _N	-	-	-	L _o	G	G	d	s
_	mm	-	-	-	mm	kg	kg	-	mm
350	30	.0350.030.0	417644	417671	256	19	21	355,6	8
350	70	.0350.070.0	417645	417672	352	29	33	355,6	8
350	100	.0350.100.0	417646	417673	424	36	41	355,6	8
400	40	.0400.040.0	417647	417674	309	29	32	406,4	8,8
400	80	.0400.080.0	417648	417675	434	45	51	406,4	8,8
400	112	.0400.112.0	417649	417676	562	66	74	406,4	8,8


	Balg			aufnahme 1) ninal	Federrate			
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral	
D _a	- 1	Α	2 α _N	2λ _N	C _δ	C _{cc}	C _λ	
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm	
412	72	1140	8,8	1,9	1425	451	59854	
412	168	1140	18	10	611	193	4714	
412	240	1140	21	21	428	136	1618	
466	125	1473	10	3,8	1527	625	27484	
466	250	1473	17	15	763	312	3433	
469	378	1483	19	32	591	243	1171	


1) Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

TYP ARN 40...

PN 40

AXIAL-KOMPENSATOREN MIT SCHWEISSENDEN

Nenn- weite	Axiale Bewegungs-	Тур		nummer usführung	Baulänge		vicht a.	Schwe	ißende
	aufnahme 1) nominal	ARN 40	ohne Leitrohr	mit Leitrohr		ohne Leitrohr	mit Leitrohr	Außen- durch- messer	Wand- dicke
DN	2 δ _N	-	-	-	L,	G	G	d	s
_	mm	-	-	-	mm	kg	kg	-	mm
50	13	.0050.013.0	417677	417699	204	1	1	60,3	2,9
50	26	.0050.026.0	417678	417700	248	1,6	1,8	60,3	2,9
65	18	.0065.018.0	417679	417701	220	2,2	2,4	76,1	2,9
65	32	.0065.032.0	417680	417702	268	2,9	3,2	76,1	2,9
80	17	.0080.017.0	417681	417703	212	2,4	2,7	88,9	3,2
80	34	.0080.034.0	417682	417704	264	3,2	3,6	88,9	3,2
100	16	.0100.016.0	417683	417705	225	2,7	3,1	114,3	3,6
100	36	.0100.036.0	417684	417706	329	4,7	5	114,3	3,6
125	24	.0125.024.0	417685	417707	272	4,7	5	139,7	4
125	44	.0125.044.0	417687	417708	363	8	9	139,7	4
150	29	.0150.029.0	417688	417709	272	6	7	168,3	4
150	52	.0150.052.0	417689	417710	427	14	15	168,3	4
200	22	.0200.022.0	417690	417711	260	11	11	219,1	4,5
200	44	.0200.044.0	417691	417712	340	15	17	219,1	4,5
200	61	.0200.061.0	417692	417713	400	19	20	219,1	4,5
250	21	.0250.021.0	417693	417714	243	13	14	273	6,3
250	49	.0250.049.0	417694	417715	327	19	21	273	6,3
250	70	.0250.070.0	417695	417717	390	24	27	273	6,3
300	24	.0300.024.0	417696	417718	276	20	22	323,9	7,1
300	54	.0300.054.0	417697	417719	391	30	34	323,9	7,1
300	77	.0300.077.0	417698	417720	534	47	53	323,9	7,1

	Balg			saufnahme 1) ninal		Federrate			
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral		
D _a	- 1	Α	2α _N	2λ _N	C _δ	C _{\alpha}	C _λ		
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm		
91	44	47,2	17	2,4	484	6,3	2252		
91	88	47,2	26	9,7	242	3,2	282		
111	60	71,6	19	3,8	467	9,3	1775		
111	108	71,6	26	12	259	5,2	304		
125	52	92,5	16	2,7	542	14	3540		
125	104	92,5	25	11	271	7	442		
147	65	136	12	2,6	703	27	4316		
147	169	136	18	16	402	15	365		
174	96	187	15	5	681	35	2646		
175	187	189	21	18	458	24	472		
206	96	269	15	5	632	47	3521		
208	247	272	20	23	528	40	449		
263	80	447	10	2,5	1497	186	19958		
263	160	447	17	9,8	748	93	2493		
263	220	447	19	19	544	68	959		
322	63	683	7,8	1,5	1747	332	57458		
322	147	683	16	8,1	749	142	4525		
322	210	683	18	17	524	99	1551		
376	92	946	7,5	2,1	2339	614	49912		
376	207	946	14	11	1039	273	4380		
378	350	951	15	26	760	201	1127		

1) Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

UNIVERSAL-KOMPENSATOREN FÜR NIEDERDRUCK (ABGAS) MIT SCHWEISSENDEN TYP URN

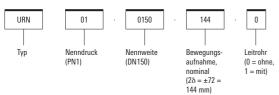
Typenbezeichnung

Die Typenbezeichnung besteht aus 2 Teilen

- 1. Typenreihe, definiert durch 3 Buchstaben
- 2. Nenngröße, definiert durch 10 Ziffern

Beispiel

Typ URN: HYDRA Universal-Kompensator mit Schweißenden


Standardausführung/Werkstoffe

Balg vielwandig aus 1.4541

Schweißende aus P235TR1 (1.0254) oder P265GH (1.0425)

Betriebstemperatur: bis 550 °C

Typenbezeichnung (beispielhaft)

Bestelltext

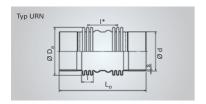
Bei Bestellung bitte angeben:

Bei Standardausführung

■ Typenbezeichnung oder Bestellnummer

Mit Werkstoffvarianten

- Typenbezeichnung
- Angabe der Werkstoffe


Die Kompensatoren für Niederdruck (Abgas) sind für den drucklosen Einsatz (PS < 0.5 bar) konzipiert.

 Für diesen Betriebszustand ist die Druckgeräterichtlinie (DGRL) nicht anzuwenden.

Hinweis

Wir passen den Kompensator Ihren Anforderungen an, wenn Sie uns die vom Standard abweichenden Maße angeben.

TYP URN 01... PN 1

Nenn- weite	Axiale Bewegungs-	Тур	Bestell- nummer	Baulänge	Gewicht ca.	Balgmitten- abstand	Schwei	ßenden
World	aufnahme 1) nominal	URN 01	Standard- ausführung		ou.	usstanu	Außen- durchmesser	Wanddicke
DN	2 δ _N	-	-	L _o	G	I*	d	s
_	mm	-	-	mm	kg	mm	-	mm
50	56	.0050.056.0	425696	480	1,4	257	60,3	2,9
65	83	.0065.083.0	425697	520	2,2	279	76,1	2,9
80	95	.0080.095.0	425698	530	2,6	280	88,9	3,2
100	119	.0100.119.0	425699	550	3,4	291	114,3	3,6
125	144	.0125.144.0	425700	550	4,2	286	139,7	4
150	144	.0150.144.0	423544	563	5	299	168,3	4
200	160	.0200.160.0	423545	572	7	292	219,1	4,5
250	168	.0250.168.0	423546	572	8	293	273	5
300	196	.0300.196.0	423547	562	10	269	323,9	5,6
350	180	.0350.180.0	423548	582	11	302	355,6	8
400	156	.0400.156.0	423549	552	17	266	406,4	8,8
450	140	.0450.140.0	423550	552	18	282	457	4
500	136	.0500.136.0	423551	602	21	310	508	4

	Balg			saufnahme 1) ninal	Federrate			
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral	
D _a	I	Α	2 α _N	2λ _N	C ₆	C _{cc}	C _{).}	
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm	
89	63	46	41	154	37	0,9	1,6	
107	81	68,7	49	197	28	1,1	1,5	
121	90	89,1	49	196	26	1,3	1,8	
148	99	137	49	203	24	1,8	2,4	
174	104	187	49	204	18	1,9	2,5	
203	104	264	42	181	21	3,1	3,8	
255	120	432	37	149	23	5,5	7	
312	119	661	31	127	27	9,7	12	
365	133	916	31	112	26	13	19	
400	120	1104	26	109	27	17	20	
458	126	1445	20	71	88	71	106	
513	110	1825	16	62	97	98	135	
569	92	2252	14	62	107	134	155	

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

06

UNIVERSAL-KOMPENSATOREN MIT SCHWEISSENDEN TYP URN

Typenbezeichnung

Die Typenbezeichnung besteht aus 2 Teilen

- 1. Typenreihe, definiert durch 3 Buchstaben
- 2. Nenngröße, definiert durch 10 Ziffern

Beispiel

Typ URN: HYDRA Universal-Kompensator mit Schweißenden

Standardausführung/Werkstoffe

Balg vielwandig aus 1.4541

Schweißenden bis DN 300: P235GH (1.0345)

Schweißenden ab DN 350: P265GH (1.0425)

Betriebstemperatur: bis 400 °C

Typenbezeichnung (beispielhaft)

Bestelltext nach Richtlinie 2014/68/EU "Druckgeräterichtlinie"

Bei Bestellung bitte angeben:

Bei Standardausführung

■ Typenbezeichnung oder Bestellnummer

Mit Werkstoffvarianten

- Typenbezeichnung
- Angabe der Werkstoffe

Für die Prüfung und Dokumentation nach Druckgeräterichtlinie werden folgende Angaben benötigt:

Druckgeräteart nach Art. 1 & 2:

- Behälter Volumen V [I]
- Rohrleitung Nennweite DN _____

Mediumeigenschaft nach Art. 13:

- Gruppe 1 gefährlich
- Gruppe 2 andere

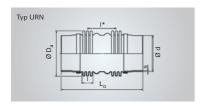
Mediumzustand:

- Gasförmig oder flüssig, wenn PD > 0.5 bar
- Flüssig, wenn PD ≤ 0.5 bar

Auslegungsdaten:

- Max. zul. Druck PS [bar]
- Max./min. zul. Temp. TS [°C]
- Prüfdruck PT [bar] _____

Optional:


■ Kategorie _____

Hinweis

Wir passen den Kompensator an Ihre Anforderungen an, wenn Sie uns die vom Standard abweichenden Maße angeben.

UNIVERSAL-KOMPENSATOREN MIT SCHWEISSENDEN

TYP URN 06... PN 6

Nenn- weite	Axiale Bewegungs-	Тур	Bestell- nummer	Baulänge	Gewicht ca.	Balgmitten- abstand	Schwei	ßenden
World	aufnahme 1) nominal	URN 06	Standard- ausführung		ca.	abstanu	Außen- durchmesser	Wanddicke
DN	2 δ _N	-	-	L _o	G	I*	d	s
_	mm	-	-	mm	kg	mm	-	mm
50	44	.0050.044.0	425701	430	1,6	216	60,3	3
65	55	.0065.055.0	425702	430	2,3	210	76,1	2,9
80	61	.0080.061.0	425703	450	2,7	224	88,9	3,2
100	73	.0100.073.0	425704	470	4,7	232	114,3	3,6
125	84	.0125.084.0	425705	500	6	240	139,7	4
150	96	.0150.096.0	423552	517	8	251	168,3	4
200	100	.0200.100.0	423553	558	12	293	219,1	4,5
250	120	.0250.120.0	423554	484	15	214	273	5
300	100	.0300.100.0	423555	509	17	230	323,9	5,6
350	110	.0350.110.0	423557	515	16	231	355,6	8
400	130	.0400.130.0	423558	521	23	227	406,4	8,8
450	140	.0450.140.0	423559	541	26	242	457	4
500	132	.0500.132.0	423560	594	37	266	508	4

	Balg			saufnahme 1) ninal	Federrate			
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral	
D _a	ı	Α	2 α _N	2λ _N	C _δ	C _a	C _{).}	
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm	
89	54	46	31	102	72	1,8	4,4	
108	60	69,4	31	99	62	2,4	6	
121	66	89,1	30	102	63	3,1	7	
150	78	139	29	99	93	7,2	15	
172	84	185	29	101	87	8,9	17	
203	90	264	27	101	85	12	22	
257	85	436	23	99	96	23	30	
316	90	670	22	66	84	31	73	
371	95	932	16	50	111	57	118	
405	100	1119	15	50	109	68	137	
461	110	1456	16	50	144	116	239	
514	115	1828	16	51	146	148	269	
572	100	2265	14	50	206	259	400	

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

06

ANGULAR-KOMPENSATOREN MIT DREHBAREN FLANSCHEN TYP WBN, WBK

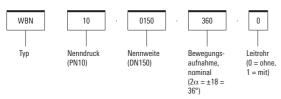
Typenbezeichnung

Die Typenbezeichnung besteht aus 2 Teilen

- 1. Typenreihe, definiert durch 3 Buchstaben
- 2. Nenngröße, definiert durch 10 Ziffern

Beispiel

Typ WBN:


HYDRA Angular-Kompensator mit drehbaren Flanschen als Einfachgelenk Typ WBK:

HYDRA Angular-Kompensator mit drehbaren Flanschen als Kardangelenk

Standardausführung/Werkstoffe

Balg vielwandig aus 1.4541 Flansch aus P265GH (1.0425) Betriebstemperatur: bis 400 °C

Typenbezeichnung (beispielhaft)

Bestelltext nach Richtlinie 2014/68/EU "Druckgeräterichtlinie"

Bei Bestellung bitte angeben:

Bei Standardausführung

■ Typenbezeichnung oder Bestellnummer

Mit Werkstoffvarianten

- Typenbezeichnung
- Angabe der Werkstoffe

Für die Prüfung und Dokumentation nach Druckgeräterichtlinie werden folgende Angaben benötigt:

Druckgeräteart nach Art. 1 & 2:

- Behälter Volumen V [I] _
- Rohrleitung Nennweite DN _____

Mediumeigenschaft nach Art. 13:

- Gruppe 1 gefährlich
- Gruppe 2 andere

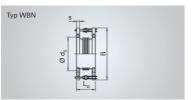
Mediumzustand:

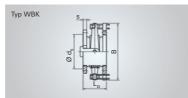
- Gasförmig oder flüssig, wenn PD > 0.5 bar
- Flüssig, wenn PD ≤ 0.5 bar

Auslegungsdaten:

- Max. zul. Druck PS [bar] _____
- Max./min. zul. Temp. TS [°C]
- Prüfdruck PT [bar] _____

Optional:

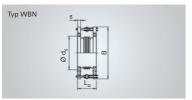

■ Kategorie _____

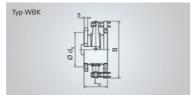

Hinweis

Wir passen den Kompensator an Ihre Anforderungen an, wenn Sie uns die vom Standard abweichenden Maße angeben. Auf Wunsch können Flansche auch mit anderen Bohrbildern / Flanschblattdicken geliefert werden. Hierbei ändert sich ggf. die angegebene Baulänge L0.

ANGULAR-KOMPENSATOREN MIT DREHBAREN FLANSCHEN

ALS EINFACHGELENK TYP WBN 06 ... ALS KARDANGELENK TYP WBK 06 ...

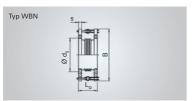

Nenn- weite	Angulare	Тур	Bestelln		WBN		W	ВК
weite	Bewegungs- aufnahme	WBN 06	Standardau	· · · · · ·				
	nominal	WBK 06	WBN	WBK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.
						Ga.		Ga.
DN	2 α _N	-	-	-	L _o	G	L _o	G
-	Grad	-	-	-	mm	kg	mm	kg
50	33,0	.0050.330.0	441221	441136	121	7	121	11
50	41,0	.0050.410.0	441222	441137	141	7	141	11
65	27,0	.0065.270.0	441223	441138	111	9	111	13
65	39,0	.0065.390.0	441224	441139	141	9	141	13
80	27,0	.0080.270.0	441225	441140	121	11	121	16
80	38,0	.0080.380.0	441226	441141	151	12	151	17
100	27,0	.0100.270.0	441227	441142	131	12	131	17
100	38,0	.0100.380.0	441228	441143	161	12	161	18
125	30,0	.0125.300.0	441229	441144	151	15	151	21
125	39,0	.0125.390.0	441230	441145	181	16	181	22
150	23,0	.0150.230.0	441231	441146	162	16	162	23
150	36,0	.0150.360.0	441232	441147	212	18	212	24
200	23,0	.0200.230.0	441233	441148	172	22	172	33
200	34,0	.0200.340.0	441234	441149	233	25	233	35
250	18,0	.0250.180.0	441235	441150	183	29	183	40
250	32,0	.0250.320.0	441236	441151	253	31	253	43
300	19,0	.0300.190.0	441237	-	183	38	-	-
300	34,0	.0300.340.0	441238	441153	263	41	263	59

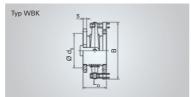

Größte Breite ca.		Flansch ²			Federrate	
	Bohrbild gem. DIN 1092	Bördel- durchmesser	Blattdicke			
В	PN	d ₅	s	C,	C _a	C _p
mm	-	mm	mm	Nm/bar	Nm/grd	Nm/grd bar
250	6	90	16	0,5	1,1	0,1
250	6	90	16	0,5	0,8	0,1
285	6	107	16	0,7	1,9	0,1
285	6	107	16	0,7	1,2	0,1
310	6	122	18	0,9	2,3	0,1
310	6	122	18	0,9	1,5	0,2
325	6	147	18	1,4	3,3	0,2
325	6	147	18	1,4	2,1	0,4
355	6	178	20	1,9	3	0,4
355	6	178	20	1,9	2,1	0,5
370	6	202	20	2,6	8,5	0,5
370	6	202	20	2,6	4,7	1,0
425	6	258	22	4	13	1,0
425	6	258	22	4	15	1,7
485	6	312	24	7	39	1,4
485	6	312	24	7	20	2,8
565	6	365	24	9	47	2,2
565	6	365	24	9	24	4,3

2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

ANGULAR-KOMPENSATOREN MIT DREHBAREN FLANSCHEN

ALS EINFACHGELENK TYP WBN 06 ... ALS KARDANGELENK TYP WBK 06 ...


P	N	ĥ

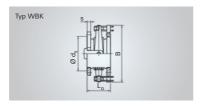

Nenn- weite	Angulare Bewegungs-	Тур	Bestellni Standardau		WBN		WBN WBK	
	aufnahme nominal	WBN 06 WBK 06	WBN	WBK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.
DN	2 α _N	-	-	-	L _o	G	L _o	G
-	Grad	-	-	-	mm	kg	mm	kg
350	18,0	.0350.180.0	441239	-	193	61	-	-
350	34,0	.0350.340.0	441240	441155	314	69	314	101
400	13,0	.0400.130.0	441241	-	213	68	-	-
400	27,0	.0400.270.0	441242	441157	343	77	343	116
450	13,0	.0450.130.0	441243	-	213	76	-	-
450	24,0	.0450.240.0	441244	441158	333	85	333	134
500	14,0	.0500.140.0	441245	-	224	86	-	-
500	26,0	.0500.260.0	441246	441159	354	99	354	159
600	13,0	.0600.130.0	441247	-	254	155	-	-
600	25,0	.0600.250.0	441248	441160	394	175	394	290
700	14,0	.0700.140.0	441249	-	284	176	-	-
700	25,0	.0700.250.0	441250	441161	446	220	446	383
800	11,0	.0800.110.0	441251	-	296	242	-	-
800	23,0	.0800.230.0	441252	441162	496	286	496	501

Größte Breite ca.		Flansch ²			Federrate		
	Bohrbild gem. DIN 1092	Bördel- durchmesser	Blattdicke				
В	PN	d _s	s	C _r	C _a	C _p	
mm	-	mm	mm	Nm/bar	Nm/grd	Nm/grd bar	
650	6	410	26	20	65	2,7	
650	6	410	26	20	35	6,4	
680	6	465	28	26	146	3,7	
680	6	465	28	26	58	9,3	
740	6	520	28	33	186	4,9	
740	6	520	28	33	83	11,0	
800	6	570	28	41	260	6,6	
800	6	570	28	41	116	15,0	
950	6	670	37	77	370	10,0	
950	6	670	37	77	164	24,0	
1060	6	775	37	104	422	18,0	
1060	6	775	37	104	308	38,0	
1180	6	880	43	135	1002	22,0	
1180	6	880	43	135	401	54,0	

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

ANGULAR-KOMPENSATOREN MIT DREHBAREN FLANSCHEN

Nenn-	Angulare	Тур	Bestelln		WBN		W	ВК
weite	Bewegungs- aufnahme	WBN 10	Standardau	· · · · · ·				
	nominal	WBK 10	WBN	WBK	Baulänge	Gewicht	Baulänge	Gewicht
						ca.		ca.
DN	2 α _N	-	-	-	L _o	G	L,	G
_	Grad	-	-	-	mm	kg	mm	kg
50	31,0	.0050.310.0	441253	441163	131	10	131	14
50	37,0	.0050.370.0	441254	441164	151	10	151	14
65	26,0	.0065.260.0	441255	441165	121	11	121	16
65	37,0	.0065.370.0	441256	441166	162	12	162	16
80	25,0	.0080.250.0	441257	441167	132	12	132	18
80	36,0	.0080.360.0	441258	441168	162	13	162	18
100	26,0	.0100.260.0	441259	441169	142	15	142	21
100	36,0	.0100.360.0	441260	441170	182	16	182	22
125	25,0	.0125.250.0	441261	441171	162	18	162	23
125	34,0	.0125.340.0	441262	441172	202	19	202	25
150	23,0	.0150.230.0	441263	441173	173	23	173	32
150	36,0	.0150.360.0	441264	441174	233	24	233	34
200	22,0	.0200.220.0	441265	441175	183	29	183	40
200	32,0	.0200.320.0	441266	441176	234	31	234	42
250	18,0	.0250.180.0	441267	441177	183	46	183	70
250	30,0	.0250.300.0	441268	441178	264	51	264	75
300	23,0	.0300.230.0	441269	-	224	57	-	-
300	29,0	.0300.290.0	441270	441180	264	60	264	91


PN 10

Größte Breite ca.		Flansch ²			Federrate	
	Bohrbild gem. DIN 1092	Bördel- durchmesser	Blattdicke			
В	PN	d _s	s	C,	C _a	C _p
mm	-	mm	mm	Nm/bar	Nm/grd	Nm/grd bar
275	16	92	19	0,5	1,1	0,1
275	16	92	19	0,5	0,8	0,1
295	16	107	20	0,7	1,9	0,1
295	16	107	20	0,7	1,8	0,2
310	16	122	20	0,9	3,8	0,1
310	16	122	20	0,9	2,4	0,2
335	16	147	22	1,4	4,9	0,2
335	16	147	22	1,4	3,1	0,4
355	16	178	22	1,8	6	0,4
355	16	178	22	1,8	3,8	0,6
385	16	208	24	2,6	15	0,6
385	16	208	24	2,6	8,4	1,0
450	10	258	24	4	23	1,1
450	10	258	24	4	17	1,7
540	10	320	26	12	39	1,4
540	10	320	26	12	22	3,0
600	10	370	28	17	45	2,9
600	10	370	28	17	32	4,0

2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

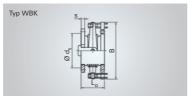
ANGULAR-KOMPENSATOREN MIT DREHBAREN FLANSCHEN ALS EINFACHGELENK TYP WBN 10 ... ALS KARDANGELENK TYP WBK 10 ...

Typ WBN s

PN	10

Nenn- weite	Angulare Bewegungs-	Тур	Bestellni Standardau		WBN		WBK	
	aufnahme nominal	WBN 10 WBK 10	WBN	WBK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.
DN	2 α _N	-	-	-	L _o	G	L _o	G
-	Grad	-	-	-	mm	kg	mm	kg
350	17,0	.0350.170.0	441271	-	204	68	-	-
350	26,0	.0350.260.0	441272	441181	274	73	274	113
400	12,0	.0400.120.0	441273	-	226	92	-	-
400	26,0	.0400.260.0	441274	441182	376	108	376	162
450	13,0	.0450.130.0	441275	-	246	115	-	-
450	25,0	.0450.250.0	441276	441183	366	131	366	204
500	14,0	.0500.140.0	441277	-	256	153	-	-
500	25,0	.0500.250.0	441278	441184	386	174	386	274
600	12,0	.0600.120.0	441279	-	276	193	-	-
600	23,0	.0600.230.0	441280	441185	416	219	416	378

Größte Breite ca.		Flansch ²		Federrate		
	Bohrbild gem. DIN 1092	Bördel- durchmesser	Blattdicke			
В	PN	d ₅	s	C,	C _a	C _p
mm	-	mm	mm	Nm/bar	Nm/grd	Nm/grd bar
660	10	410	28	20	78	2,8
660	10	410	28	20	45	5,0
710	10	465	32	26	297	4,1
710	10	465	32	26	119	10,0
810	10	520	37	33	362	5,4
810	10	520	37	33	161	12,0
860	10	570	37	55	395	7,1
860	10	570	37	55	176	16,0
980	10	670	43	77	581	11,0
980	10	670	43	77	259	24,0


2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

06

Typ WBN

ANGULAR-KOMPENSATOREN MIT DREHBAREN FLANSCHEN

ALS EINFACHGELENK TYP WBN 16 ... ALS KARDANGELENK TYP WBK 16 ...

P	Λ	1	6
	IV		u

Nenn- weite	Angulare Bewegungs-	Тур	Bestellnummer WBN Standardausführung		BN	WBK		
weite	aufnahme nominal	WBN 16 WBK 16	WBN	WBK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.
DN	2 α _N	-	-	-	L _o	G	L _o	G
_	Grad	-	-	-	mm	kg	mm	kg
50	25,0	.0050.250.0	441281	441186	122	10	122	15
50	34,0	.0050.340.0	441282	441187	152	10	152	15
65	25,0	.0065.250.0	441283	441188	132	11	132	16
65	34,0	.0065.340.0	441284	441189	163	12	163	17
80	23,0	.0080.230.0	441285	441190	143	13	143	18
80	32,0	.0080.320.0	441286	441191	173	14	173	19
100	24,0	.0100.240.0	441287	441192	153	16	153	23
100	33,0	.0100.330.0	441288	441193	183	17	183	24
125	24,0	.0125.240.0	441289	441194	163	19	163	27
125	33,0	.0125.330.0	441290	441195	214	20	214	29
150	22,0	.0150.220.0	441291	441196	173	23	173	33
150	31,0	.0150.310.0	441292	441197	224	25	224	34
200	22,0	.0200.220.0	441293	441198	195	43	195	64
200	31,0	.0200.310.0	441294	441199	245	46	245	67
250	14,0	.0250.140.0	441295	441200	214	53	214	82
250	23,0	.0250.230.0	441296	441201	285	60	285	89
300	15,0	.0300.150.0	441297	-	235	76	-	-
300	22,0	.0300.220.0	441298	441202	325	83	325	123
350	12,0	.0350.120.0	441299	-	215	98	-	-
350	19,0	.0350.190.0	441300	441203	305	106	305	161

Größte Breite ca.		Flansch ²		Federrate			
	Bohrbild gem. DIN 1092	Bördel- durchmesser	Blattdicke				
В	PN	d ₅	s	C _r	C _{\alpha}	C _p	
mm	-	mm	mm	Nm/bar	Nm/grd	Nm/grd bar	
275	16	92	19	0,5	2,2	0,1	
275	16	92	19	0,5	1,4	0,1	
295	16	107	20	0,7	2,9	0,1	
295	16	107	20	0,7	3,3	0,2	
310	16	122	20	0,9	6,9	0,2	
310	16	122	20	0,9	4,3	0,3	
335	16	147	22	1,4	8,8	0,3	
335	16	147	22	1,4	5,5	0,4	
365	16	178	22	1,9	11	0,4	
365	16	178	22	1,9	8,1	0,7	
395	16	208	24	2,6	15	0,6	
395	16	208	24	2,7	11	1,0	
500	16	258	26	8	38	1,2	
500	16	258	26	8	24	1,8	
540	16	320	29	12	96	1,9	
540	16	320	29	12	67	3,4	
600	16	375	37	17	147	2,9	
600	16	375	37	17	82	5,2	
720	16	410	37	20	216	2,8	
720	16	410	37	20	108	5,5	

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

Angulare

Bewegungs-

aufnahme

nominal

2α_N

Grad

22.0

30,0

23.0

30,0

22.0

28,0

22.0

27,0

22.0

29,0

20.0

27,0

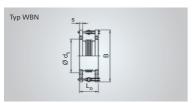
14.0

22,0

14.0

20,0

14.0


19,0

11.0

18,0

DN

ANGULAR-KOMPENSATOREN MIT DREHBAREN FLANSCHEN

Typ

WBN 25..

WBK 25...

_

.0050.220.0

.0050.300.0

.0065.230.0

.0065.300.0

.0080.220.0

.0080.280.0

.0100.220.0

.0100.270.0

.0125.220.0

.0125.290.0

.0150.200.0

.0150.270.0

.0200.140.0

.0200.220.0

.0250.140.0

.0250.200.0

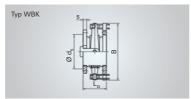
.0300.140.0

.0300.190.0

.0350.110.0

.0350.180.0

Bestellnummer


Standardausführung

WBK

_

WBN

_

WBK

Gewic

G

kg

Baulänge

L.

mm

WBN

Gewicht

G

kg

Baulänge

L.

mm

ht		
_		

PN	25

Größte Breite ca.		Flansch ²		Federrate		
	Bohrbild gem. DIN 1092	Bördel- durchmesser	Blattdicke	-		
В	PN	d _s	s	C _r	C _a	C _p
mm	-	mm	mm	Nm/bar	Nm/grd	Nm/grd bar
275	40	92	20	0,5	4,2	0,1
275	40	92	20	0,5	2,6	0,1
295	40	107	22	0,7	5,3	0,1
295	40	107	22	0,7	3,3	0,2
310	40	122	24	0,9	8,3	0,2
310	40	122	24	0,9	5,9	0,2
340	40	147	24	1,4	11	0,3
340	40	147	24	1,4	7,5	0,4
365	40	178	26	1,9	19	0,4
365	40	178	26	1,9	12	0,7
460	40	208	28	4,8	26	0,6
460	40	208	28	4,8	16	1,0
500	25	258	32	8	84	1,2
500	25	258	32	8	57	2,1
570	25	320	37	12	147	2,0
570	25	320	37	12	92	3,2
670	25	375	43	23	188	3,0
670	25	375	43	23	104	5,4
750	25	410	47	27	343	3,2
750	25	410	47	27	196	5,6

2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

06

ANGULAR-KOMPENSATOREN MIT GLATTEN FESTFLANSCHEN TYP WFN, WFK

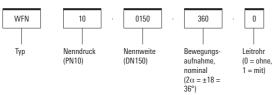
Typenbezeichnung

Die Typenbezeichnung besteht aus 2 Teilen

- 1. Typenreihe, definiert durch 3 Buchstaben
- 2. Nenngröße, definiert durch 10 Ziffern

Beispiel

Typ WFN:


HYDRA Angular-Kompensator mit glatten Festflanschen als Einfachgelenk Typ WFK:

HYDRA Angular-Kompensator mit glatten Festflanschen als Kardangelenk

Standardausführung/Werkstoffe

Balg vielwandig aus 1.4541 Flansch aus P265GH (1.0425) Betriebstemperatur: bis 400 °C

Typenbezeichnung (beispielhaft)

Bestelltext nach Richtlinie 2014/68/EU "Druckgeräterichtlinie"

Bei Bestellung bitte angeben:

Bei Standardausführung

■ Typenbezeichnung oder Bestellnummer

Mit Werkstoffvarianten

- Typenbezeichnung
- Angabe der Werkstoffe

Für die Prüfung und Dokumentation nach Druckgeräterichtlinie werden folgende Angaben benötigt:

Druckgeräteart nach Art. 1 & 2:

- Behälter Volumen V [I] _
- Rohrleitung Nennweite DN _____

Mediumeigenschaft nach Art. 13:

- Gruppe 1 gefährlich
- Gruppe 2 andere

Mediumzustand:

- Gasförmig oder flüssig, wenn PD > 0.5 bar
- Flüssig, wenn PD ≤ 0.5 bar

Auslegungsdaten:

- Max. zul. Druck PS [bar]
- Max./min. zul. Temp. TS [°C]
- Prüfdruck PT [bar] _____

Optional:


■ Kategorie _____

Hinweis

Wir passen den Kompensator an Ihre Anforderungen an, wenn Sie uns die vom Standard abweichenden Maße angeben. Auf Wunsch können Flansche auch mit anderen Bohrbildern / Flanschblattdicken geliefert werden. Hierbei ändert sich ggf. die angegebene Baulänge L0.

ALS EINFACHGELENK TYP WFN 06 ... ALS KARDANGELENK TYP WFK 06 ...

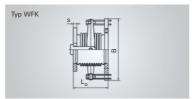
PN	6

Nenn- weite	Angulare Bewegungs-	Тур		Bestellnummer tandardausführung		WFN		WFK	
	aufnahme nominal	WFN 06 WFK 06	WFN	WFK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.	
DN	2 α _N	-	-	-	L _o	G	L _o	G	
-	Grad	-	-	-	mm	kg	mm	kg	
50	33,0	.0050.330.0	442098	441321	140	7	140	11	
50	41,0	.0050.410.0	442099	441322	160	7	160	11	
65	27,0	.0065.270.0	442100	441323	130	8	130	13	
65	39,0	.0065.390.0	442101	441324	160	9	160	13	
80	27,0	.0080.270.0	442102	441325	140	11	140	16	
80	38,0	.0080.380.0	442103	441326	170	12	170	17	
100	27,0	.0100.270.0	442104	441327	140	12	140	17	
100	38,0	.0100.380.0	442105	441328	170	13	170	18	
125	30,0	.0125.300.0	442106	441329	160	15	160	21	
125	39,0	.0125.390.0	442107	441330	190	16	190	22	
150	23,0	.0150.230.0	442108	441331	170	17	170	23	
150	36,0	.0150.360.0	442109	441332	220	17	220	24	
200	23,0	.0200.230.0	442110	441333	180	22	180	32	
200	34,0	.0200.340.0	442111	441334	240	24	240	35	
250	18,0	.0250.180.0	442112	441335	180	28	180	40	
250	32,0	.0250.320.0	442113	441336	260	31	260	42	
300	19,0	.0300.190.0	442114	-	190	37	-	-	
300	34,0	.0300.340.0	442115	441338	270	41	270	59	

Größte Breite ca.	Flan	sch ²	Federrate			
	Bohrbild gem. DIN 1092	Blattdicke				
В	PN	s	C _r	C _a	C _p	
mm	-	mm	Nm/bar	Nm/grd	Nm/grd bar	
250	6	16	0,5	1,1	0,10	
250	6	16	0,5	0,8	0,1	
285	6	16	0,7	1,9	0,1	
285	6	16	0,7	1,2	0,1	
310	6	18	0,9	2,3	0,1	
310	6	18	0,9	1,4	0,2	
325	6	18	1,4	3,3	0,2	
325	6	18	1,4	2,1	0,4	
355	6	20	1,9	3	0,4	
355	6	20	1,9	2,1	0,5	
370	6	20	2,6	8,5	0,5	
370	6	20	2,6	4,7	1,0	
425	6	22	4	13	1,0	
425	6	22	4	15	1,7	
485	6	24	7	39	1,4	
485	6	24	7	20	2,8	
565	6	24	9	47	2,2	
565	6	24	9	24	4,3	

2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

ALS EINFACHGELENK TYP WFN 06 ... ALS KARDANGELENK TYP WFK 06 ...


Nenn- weite	Angulare Bewegungs-	Тур	Bestellnummer Standardausführung		WFN		WFK	
	aufnahme nominal	WFN 06 WFK 06	WFN	WFK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.
DN	2 α _N	-	-	-	L _o	G	L _o	G
-	Grad	-	-	-	mm	kg	mm	kg
350	18,0	.0350.180.0	442116	-	200	60	-	-
350	34,0	.0350.340.0	442117	441340	310	68	310	100
400	13,0	.0400.130.0	442118	-	210	66	-	-
400	27,0	.0400.270.0	442119	441342	340	76	340	115
450	13,0	.0450.130.0	442120	-	210	74	-	-
450	24,0	.0450.240.0	442121	441343	330	83	330	133
500	14,0	.0500.140.0	442122	-	220	84	-	-
500	26,0	.0500.260.0	442123	441344	350	97	350	157
600	13,0	.0600.130.0	442124	-	250	152	-	-
600	25,0	.0600.250.0	442125	441345	390	172	390	287
700	14,0	.0700.140.0	442126	-	280	173	-	-
700	25,0	.0700.250.0	442127	441346	440	214	440	378
800	11,0	.0800.110.0	442128	-	290	235	-	-
800	23,0	.0800.230.0	442129	441347	490	279	490	494

Größte Breite ca.	Flan	sch ²	Federrate			
	Bohrbild gem. DIN 1092	Blattdicke	-			
В	PN	S	C _r	C _a	C _p	
mm	-	mm	Nm/bar	Nm/grd	Nm/grd bar	
650	6	26	20	65	2,7	
650	6	26	20	34	6,4	
680	6	28	26	145	3,7	
680	6	28	26	58	9,3	
740	6	28	33	185	4,9	
740	6	28	33	82	11,0	
800	6	28	41	259	6,6	
800	6	28	41	115	15,0	
950	6	37	77	368	10,0	
950	6	37	77	164	24,0	
1060	6	37	104	420	18,0	
1060	6	37	104	305	38,0	
1180	6	43	135	998	22,0	
1180	6	43	135	400	54,0	

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

ALS EINFACHGELENK TYP WFN 10 ... ALS KARDANGELENK TYP WFK 10 ...

Typ WFN S.

P	N	1	N
	ıw		v

Nenn- weite	Angulare Bewegungs-	Тур	Bestellni Standardau		W	FN	WFK	
	aufnahme nominal	WFN 10 WFK 10	WFN	WFK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.
DN	2 α _N	-	-	-	L _o	G	L,	G
-	Grad	-	-	-	mm	kg	mm	kg
50	31,0	.0050.310.0	442130	441348	140	10	140	14
50	37,0	.0050.370.0	442131	441349	160	10	160	14
65	26,0	.0065.260.0	442132	441350	130	11	130	16
65	37,0	.0065.370.0	442133	441351	170	12	170	17
80	25,0	.0080.250.0	442134	441352	140	12	140	17
80	36,0	.0080.360.0	442135	441353	180	13	180	18
100	26,0	.0100.260.0	442136	441354	150	15	150	20
100	36,0	.0100.360.0	442137	441355	190	16	190	22
125	25,0	.0125.250.0	442138	441356	170	18	170	24
125	34,0	.0125.340.0	442139	441357	210	18	210	24
150	23,0	.0150.230.0	442140	441358	180	23	180	32
150	36,0	.0150.360.0	442141	441359	240	24	240	33
200	22,0	.0200.220.0	442142	441360	190	28	190	39
200	32,0	.0200.320.0	442143	441361	240	31	240	41
250	18,0	.0250.180.0	442144	441362	190	46	190	69
250	30,0	.0250.300.0	442145	441363	270	51	270	75
300	23,0	.0300.230.0	442146	-	220	56	-	-
300	29,0	.0300.290.0	442147	441365	260	59	260	90


Größte Breite ca.	Flansch ²		Federrate			
	Bohrbild gem. DIN 1092	Blattdicke	-			
В	PN	s	C _r	C _a	C _p	
mm	-	mm	Nm/bar	Nm/grd	Nm/grd bar	
275	16	19	0,5	1,1	0,07	
275	16	19	0,5	0,8	0,1	
295	16	20	0,7	1,9	0,1	
295	16	20	0,7	1,8	0,2	
310	16	20	0,9	3,8	0,1	
310	16	20	0,9	2,4	0,2	
335	16	22	1,4	4,9	0,2	
335	16	22	1,4	3,1	0,4	
355	16	22	1,8	6	0,4	
355	16	22	1,8	3,7	0,6	
385	16	24	2,6	15	0,6	
385	16	24	2,6	8,3	1,0	
450	10	24	4	23	1,1	
450	10	24	4	17	1,7	
540	10	26	12	39	1,4	
540	10	26	12	22	3,0	
600	10	28	17	45	2,9	
600	10	28	17	32	4,0	

2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

ALS EINFACHGELENK TYP WFN 10 ... ALS KARDANGELENK TYP WFK 10 ...

Typ WFK

PN 10

Nenn- weite	Angulare Bewegungs-	Тур	Bestellni Standardau		WFN		WFK	
	aufnahme nominal	WFN 10 WFK 10	WFN	WFK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.
DN	2 α _N	-	-	-	L _o	G	L,	G
-	Grad	-	-	-	mm	kg	mm	kg
350	17,0	.0350.170.0	442148	-	200	67	-	-
350	26,0	.0350.260.0	442149	441366	270	72	270	112
400	12,0	.0400.120.0	442150	-	220	89	-	-
400	26,0	.0400.260.0	442151	441367	370	105	370	159
450	13,0	.0450.130.0	442152	-	240	112	-	-
450	25,0	.0450.250.0	442153	441368	360	127	360	200
500	14,0	.0500.140.0	442154	-	250	149	-	-
500	25,0	.0500.250.0	442155	441369	380	171	380	270
600	12,0	.0600.120.0	442156	-	270	188	-	-
600	23,0	.0600.230.0	442157	441370	410	214	410	373

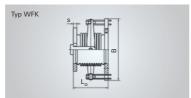
Größte Breite ca.	Flan	sch ²	Federrate		
	Bohrbild gem. DIN 1092	Blattdicke			
В	PN	s	C _r	C _{\alpha}	C _p
mm	-	mm	Nm/bar	Nm/grd	Nm/grd bar
660	10	28	20	77	2,8
660	10	28	20	44	5,0
710	10	32	26	294	4,1
710	10	32	26	118	10,0
810	10	37	33	358	5,4
810	10	37	33	159	12,0
860	10	37	55	392	7,1
860	10	37	55	174	16,0
980	10	43	77	577	11,0
980	10	43	77	257	24,0

2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

ALS EINFACHGELENK TYP WFN 16 ... ALS KARDANGELENK TYP WFK 16 ...

P	N	16	

Nenn- weite	Angulare Bewegungs-	Тур	Bestellni Standardau		W	FN	W	FK
	aufnahme nominal	WFN 16 WFK 16	WFN	WFK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.
DN	2 α _N	-	-	-	L _o	G	L _o	G
-	Grad	-	-	-	mm	kg	mm	kg
50	25,0	.0050.250.0	442158	441371	130	10	130	14
50	34,0	.0050.340.0	442159	441372	160	10	160	14
65	25,0	.0065.250.0	442160	441373	140	11	140	16
65	34,0	.0065.340.0	442161	441374	180	12	180	17
80	23,0	.0080.230.0	442162	441375	150	13	150	18
80	32,0	.0080.320.0	442163	441376	180	13	180	19
100	24,0	.0100.240.0	442164	441377	160	15	160	22
100	33,0	.0100.330.0	442165	441378	190	16	190	23
125	24,0	.0125.240.0	442166	441379	170	19	170	28
125	33,0	.0125.330.0	442167	441380	220	20	220	29
150	22,0	.0150.220.0	442168	441381	180	23	180	33
150	31,0	.0150.310.0	442169	441382	230	25	230	34
200	22,0	.0200.220.0	442170	441383	190	42	190	64
200	31,0	.0200.310.0	442171	441384	250	45	250	66
250	14,0	.0250.140.0	442172	441385	210	52	210	81
250	23,0	.0250.230.0	442173	441386	280	59	280	88
300	15,0	.0300.150.0	442174	-	230	74	-	-
300	22,0	.0300.220.0	442175	441387	320	81	320	121
350	12,0	.0350.120.0	442176	-	210	96	-	-
350	19,0	.0350.190.0	442177	441388	300	104	300	159


Größte Breite ca.	Flansch ²		Federrate				
	Bohrbild gem. DIN 1092	Blattdicke	-				
В	PN	s	C _r	C _a	C _p		
mm	-	mm	Nm/bar	Nm/grd	Nm/grd bar		
275	16	19	0,5	2,2	0,06		
275	16	19	0,5	1,4	0,1		
295	16	20	0,7	2,9	0,1		
295	16	20	0,7	3,3	0,2		
310	16	20	0,9	6,8	0,2		
310	16	20	0,9	4,3	0,3		
335	16	22	1,4	8,6	0,3		
335	16	22	1,4	5,4	0,4		
365	16	22	1,9	11	0,4		
365	16	22	1,9	8	0,7		
395	16	24	2,6	15	0,6		
395	16	24	2,7	11	1,0		
500	16	26	8	37	1,2		
500	16	26	8	23	1,8		
540	16	29	12	95	1,9		
540	16	29	12	66	3,4		
600	16	37	17	146	2,9		
600	16	37	17	81	5,2		
720	16	37	20	214	2,8		
720	16	37	20	107	5,5		

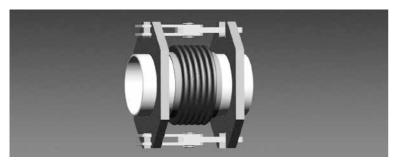
²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

ALS EINFACHGELENK TYP WFN 25 ... ALS KARDANGELENK TYP WFK 25 ...

ANGULAR-KOMPENSATOREN MIT GLATTEN FESTFLANSCHEN

IIVZ	J	

Nenn- weite	Angulare Bewegungs-	Тур	Bestellnı Standardau		W	FN	W	FK
	aufnahme nominal	WFN 25 WFK 25	WFN	WFK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.
DN	2 α _N	-	-	-	L _o	G	L _o	G
_	Grad	-	-	-	mm	kg	mm	kg
50	22,0	.0050.220.0	442178	441389	140	10	140	15
50	30,0	.0050.300.0	442179	441390	170	11	170	16
65	23,0	.0065.230.0	442180	441391	150	13	150	17
65	30,0	.0065.300.0	442181	441392	180	13	180	18
80	22,0	.0080.220.0	442182	441393	150	15	150	21
80	28,0	.0080.280.0	442183	441394	180	16	180	22
100	22,0	.0100.220.0	442184	441395	160	19	160	27
100	27,0	.0100.270.0	442185	441396	180	20	180	28
125	22,0	.0125.220.0	442186	441397	180	25	180	34
125	29,0	.0125.290.0	442187	441398	230	26	230	35
150	20,0	.0150.200.0	442188	441399	180	42	180	61
150	27,0	.0150.270.0	442189	441400	230	45	230	62
200	14,0	.0200.140.0	442190	441401	200	51	200	77
200	22,0	.0200.220.0	442191	441402	270	57	270	83
250	14,0	.0250.140.0	442192	-	230	72	-	-
250	20,0	.0250.200.0	442193	441403	290	76	290	116
300	14,0	.0300.140.0	442194	-	250	118	-	-
300	19,0	.0300.190.0	442195	441404	340	129	340	202
350	11,0	.0350.110.0	442196	-	250	159	-	-
350	18,0	.0350.180.0	442197	441405	320	170	320	262


Größte Breite ca.	Flan	sch ²	Federrate			
	Bohrbild gem. DIN 1092	Blattdicke				
В	PN	S	C _r	C _a	C _p	
mm	-	mm	Nm/bar	Nm/grd	Nm/grd bar	
275	40	20	0,5	4,0	0,07	
275	40	20	0,5	2,5	0,1	
295	40	22	0,7	5,2	0,1	
295	40	22	0,7	3,3	0,2	
310	40	24	0,9	8,1	0,2	
310	40	24	0,9	5,8	0,2	
340	40	24	1,4	10	0,3	
340	40	24	1,4	7,4	0,4	
365	40	26	1,9	18	0,4	
365	40	26	1,9	12	0,7	
460	40	28	4,8	26	0,6	
460	40	28	4,8	16	1,0	
500	25	32	8	83	1,2	
500	25	32	8	56	2,1	
570	25	37	12	145	2,0	
570	25	37	12	91	3,2	
670	25	43	23	186	3,0	
670	25	43	23	103	5,4	
750	25	47	27	339	3,2	
750	25	47	27	193	5,6	

2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

240 *WITZENMANN* 1501de/19/10/23/pdf (HYDRA) 1501de/19/10/23/pdf *WITZENMANN* **241**

. .

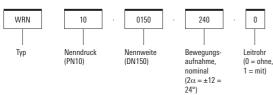
ANGULAR-KOMPENSATOREN MIT SCHWEISSENDEN TYP WRN, WRK

Typenbezeichnung

Die Typenbezeichnung besteht aus 2 Teilen

- 1. Typenreihe, definiert durch 3 Buchstaben
- 2. Nenngröße, definiert durch 10 Ziffern

Beispiel


Typ WRN: HYDRA Angular-Kompensator mit Schweißenden als Einfachgelenk Typ WRK: HYDRA Angular-Kompensator mit Schweißenden als Kardangelenk

Standardausführung/Werkstoffe

Balg vielwandig aus 1.4541 Schweißende bis DN 300 aus P 235 GH (1.0345) Schweißende ab DN 350 aus P 265 GH (1.0425)

Betriebstemperatur: bis 400 °C

Typenbezeichnung (beispielhaft)

Bestelltext nach Richtlinie 2014/68/EU "Druckgeräterichtlinie"

Bei Bestellung bitte angeben:

Bei Standardausführung

■ Typenbezeichnung oder Bestellnummer

Mit Werkstoffvarianten

- Typenbezeichnung
- Angabe der Werkstoffe

Für die Prüfung und Dokumentation nach Druckgeräterichtlinie werden folgende Angaben benötigt:

Druckgeräteart nach Art. 1 & 2:

- Behälter Volumen V [I]
- Rohrleitung Nennweite DN _____

Mediumeigenschaft nach Art. 13:

- Gruppe 1 gefährlich
- Gruppe 2 andere

Mediumzustand:

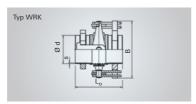
- Gasförmig oder flüssig, wenn PD > 0.5 bar
- Flüssig, wenn PD ≤ 0.5 bar

Auslegungsdaten:

- Max. zul. Druck PS [bar]
- Max./min. zul. Temp. TS [°C]
- Prüfdruck PT [bar] _____

Optional:

■ Kategorie _____


Hinweis

Wir passen den Kompensator an Ihre Anforderungen an, wenn Sie uns die vom Standard abweichenden Maße angeben.

ALS EINFACHGELENK TYP WRN 02 ... ALS KARDANGELENK TYP WRK 02 ...

ANGULAR-KOMPENSATOREN MIT SCHWEISSENDEN

Typ WRN

PN 2,5

Nenn- weite	Angulare	Тур	Bestelln		W	RN	w	RK
weite	Bewegungs- aufnahme	WRN 02	Standardau WRN	WRK	Baulänge	Gewicht	Baulänge	Gewicht
	nominal	WRK 02				ca.		ca.
DN	2 α _N	-	-	-	L,	G	L,	G
-	Grad	-	-	-	mm	kg	mm	kg
400	10,0	.0400.100.0	441744	441436	290	32	290	47
400	20,0	.0400.200.0	441745	441437	350	35	350	50
400	28,0	.0400.280.0	441746	441438	410	37	410	52
450	9,9	.0450.099.0	441747	441439	290	37	290	55
450	19,0	.0450.190.0	441748	441440	355	41	355	58
450	26,0	.0450.260.0	441749	441441	420	43	420	61
500	11,0	.0500.110.0	441750	441442	320	44	320	67
500	20,0	.0500.200.0	441751	441443	385	48	385	71
500	30,0	.0500.300.0	441752	441444	475	53	475	76
600	10,0	.0600.100.0	441753	441445	345	64	345	99
600	22,0	.0600.220.0	441754	441446	450	70	450	105
600	29,0	.0600.290.0	441755	441447	550	76	550	111
700	9,1	.0700.091.0	441756	441448	395	92	395	158
700	17,0	.0700.170.0	441757	441449	475	99	475	164
700	25,0	.0700.250.0	441758	441450	615	110	615	175
800	8,4	.0800.084.0	441759	441451	440	126	440	219
800	18,0	.0800.180.0	441760	441452	555	136	555	228
800	26,0	.0800.260.0	441761	441453	670	156	670	249
900	7,4	.0900.074.0	441762	441454	445	146	445	266
900	14,0	.0900.140.0	441763	441455	530	155	530	275
900	20,0	.0900.200.0	441764	441456	680	169	680	289

Größte Breite ca.	Schwe	eißende		Federrate		
	Außen- durchmesser	Wanddicke	-			
В	d	S	C _r	C _a	C _p	
mm	mm	mm	Nm/bar	Nm/grd	Nm/grd bar	
595	406,4	8,8	14	142	2,6	
595	406,4	8,8	14	71	5,3	
595	406,4	8,8	14	47	7,9	
655	457	6,0	18	165	3,5	
655	457	6,0	18	82	7	
655	457	6,0	18	55	11	
715	508	6,0	23	179	4,5	
715	508	6,0	23	89	9	
715	508	6,0	23	54	15	
815	610	6,0	32	254	7,3	
815	610	6,0	32	109	17	
815	610	6,0	32	69	27	
970	711	8,0	78	326	11	
970	711	8,0	78	162	21	
970	711	8,0	78	89	39	
1080	813	8,0	101	456	14	
1080	813	8,0	101	196	33	
1080	813	8,0	101	186	52	
1200	914	8,0	128	628	19	
1200	914	8,0	128	313	37	
1200	914	8,0	128	170	68	

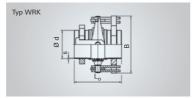
06

Typ WRN

ANGULAR-KOMPENSATOREN MIT SCHWEISSENDEN

ALS EINFACHGELENK TYP WRN 02 ... ALS KARDANGELENK TYP WRK 02 ...

ту

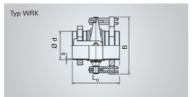


PN 2,5

Nenn- weite	Angulare Bewegungs-	Тур	Bestellnummer Standardausführung		WRN		WRK	
	aufnahme nominal	WRN 02 WRK 02	WRN	WRK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.
DN	2 α _N	-	-	-	L _o	G	L,	G
_	Grad	-	-	-	mm	kg	mm	kg
1000	7,7	.1000.077.0	441765	441457	495	191	495	345
1000	14,0	.1000.140.0	441766	441458	590	200	590	355
1000	22,0	.1000.220.0	441767	441459	725	226	725	380
1200	6,5	.1200.065.0	441768	441460	535	284	535	567
1200	12,0	.1200.120.0	441769	441461	630	302	630	585
1200	18,0	.1200.180.0	441770	441462	755	326	755	609
1400	4,0	.1400.040.0	441771	-	565	396	-	-
1400	7,7	.1400.077.0	441772	441463	680	416	680	807
1400	12,0	.1400.120.0	441773	441464	850	469	850	860
1600	3,5	.1600.035.0	441774	-	565	523	-	-
1600	6,8	.1600.068.0	441775	441465	680	549	680	1161
1600	11,0	.1600.110.0	441776	441466	835	584	835	1195
1800	3,1	.1800.031.0	441777	-	565	575	-	-
1800	6,1	.1800.061.0	441778	-	680	603	-	-
1800	9,5	.1800.095.0	441779	441467	835	640	835	1430
2000	2,8	.2000.028.0	441780	-	615	773	-	-
2000	5,5	.2000.055.0	441781	-	730	803	-	-
2000	8.6	.2000.086.0	441782	441468	885	843	885	1846

Größte Breite ca.	Schwe	ißende	Federrate			
	Außen- durchmesser	Wanddicke	-			
В	d	s	C,	C _a	C _p	
mm	mm	mm	Nm/bar	Nm/grd	Nm/grd bar	
1310	1016	8,0	157	814	24	
1310	1016	8,0	157	408	49	
1310	1016	8,0	158	367	84	
1540	1220	10,0	296	1750	34	
1540	1220	10,0	296	877	69	
1540	1220	10,0	296	524	115	
1740	1420	10,0	399	5560	56	
1740	1420	10,0	399	2782	113	
1740	1420	10,0	400	2516	195	
1995	1620	10,0	646	8156	73	
1995	1620	10,0	646	4078	146	
1995	1620	10,0	646	2446	243	
2185	1820	10,0	811	11440	92	
2185	1820	10,0	811	5724	183	
2185	1820	10,0	811	3433	305	
2425	2020	10,0	996	15513	112	
2425	2020	10,0	996	7752	225	
2425	2020	10,0	996	4655	375	

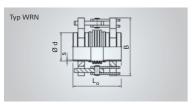
06



P	N	6
	ıw	·

Nenn- weite	Angulare Bewegungs-	Тур	Bestellnummer Standardausführung		WRN		WRK	
	aufnahme nominal	WRN 06 WRK 06	WRN	WRK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.
DN	2 α _N	-	-	-	L _o	G	L _o	G
-	Grad	-	-	-	mm	kg	mm	kg
50	18,0	.0050.180.0	441798	441471	210	5	210	8
50	28,0	.0050.280.0	441799	441472	225	5	225	9
50	37,0	.0050.370.0	441800	441473	240	5	240	9
65	17,0	.0065.170.0	441801	441474	210	6	210	9
65	27,0	.0065.270.0	441802	441475	225	6	225	10
65	39,0	.0065.390.0	441803	441476	250	6	250	10
80	17,0	.0080.170.0	441804	441477	210	6	210	10
80	27,0	.0080.270.0	441805	441478	230	7	230	11
80	38,0	.0080.380.0	441806	441479	260	7	260	11
100	17,0	.0100.170.0	441807	441480	215	8	215	12
100	27,0	.0100.270.0	441808	441481	235	8	235	13
100	38,0	.0100.380.0	441809	441482	265	9	265	13
125	19,0	.0125.190.0	441810	441483	235	9	235	14
125	30,0	.0125.300.0	441811	441484	260	9	260	14
125	39,0	.0125.390.0	441812	441485	285	10	285	14
150	15,0	.0150.150.0	441813	441486	240	11	240	17
150	27,0	.0150.270.0	441814	441487	280	12	280	17
150	36,0	.0150.360.0	441815	441488	320	12	320	18
200	14,0	.0200.140.0	441816	441489	270	20	270	29
200	29,0	.0200.290.0	441817	441490	330	21	330	30
200	40,0	.0200.400.0	441818	441491	390	24	390	33
250	14,0	.0250.140.0	441819	441492	275	27	275	38
250	22,0	.0250.220.0	441820	441493	310	28	310	39
250	32,0	.0250.320.0	441821	441494	365	30	365	41

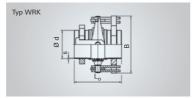
Größte Breite ca.	Schwe	ißende	Federrate			
	Außen- durchmesser	Wanddicke	_			
В	d	s	C _r	C _a	C _p	
mm	mm	mm	Nm/bar	Nm/grd	Nm/grd bar	
195	60,3	2,9	0,5	2,2	0,04	
195	60,3	2,9	0,5	1,3	0,06	
195	60,3	2,9	0,5	1	0,08	
215	76,1	2,9	0,7	3,2	0,05	
215	76,1	2,9	0,7	1,9	0,09	
215	76,1	2,9	0,7	1,2	0,1	
230	88,9	3,2	0,9	3,9	0,08	
230	88,9	3,2	0,9	2,3	0,1	
230	88,9	3,2	0,9	1,5	0,2	
265	114,3	3,6	1,4	5,5	0,1	
265	114,3	3,6	1,4	3,3	0,2	
265	114,3	3,6	1,4	2,1	0,4	
285	139,7	4,0	1,9	5	0,2	
285	139,7	4,0	1,9	3	0,4	
285	139,7	4,0	1,9	2,1	0,5	
325	168,3	4,0	2,6	14	0,3	
325	168,3	4,0	2,6	7,2	0,6	
325	168,3	4,0	2,6	4,7	1	
385	219,1	4,5	4,3	22	0,6	
385	219,1	4,5	4,3	9,5	1,4	
385	219,1	4,5	4,4	12	2,2	
445	273	5,0	6,7	52	1,1	
445	273	5,0	6,7	31	1,8	
445	273	5,0	6,7	20	2,8	


06

D	Λ	G
Г	IV	U

Nenn- weite	Angulare Bewegungs-	Тур	Bestellnummer Standardausführung		WRN		WRK	
	aufnahme nominal	WRN 06 WRK 06	WRN	WRK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.
DN	2 α _N	-	-	-	L _o	G	L _o	G
-	Grad	-	-	-	mm	kg	mm	kg
300	15,0	.0300.150.0	441822	441495	285	38	285	53
300	23,0	.0300.230.0	441823	441496	325	40	325	54
300	34,0	.0300.340.0	441824	441497	385	43	385	57
350	13,0	.0350.130.0	441825	441498	330	46	330	71
350	25,0	.0350.250.0	441826	441499	390	49	390	75
350	34,0	.0350.340.0	441827	441500	460	55	460	80
400	10,0	.0400.100.0	441828	441501	350	60	350	94
400	19,0	.0400.190.0	441829	441502	415	65	415	99
400	27,0	.0400.270.0	441830	441503	500	71	500	105
450	9,8	.0450.098.0	441831	441504	355	68	355	111
450	18,0	.0450.180.0	441832	441505	420	74	420	117
450	24,0	.0450.240.0	441833	441506	490	79	490	122
500	10,0	.0500.100.0	441834	441507	385	88	385	144
500	17,0	.0500.170.0	441835	441508	435	93	435	150
500	26,0	.0500.260.0	441836	441509	530	103	530	160
600	10,0	.0600.100.0	441837	441510	435	136	435	243
600	16,0	.0600.160.0	441838	441511	490	144	490	250
600	25,0	.0600.250.0	441839	441512	600	160	600	266
700	9,1	.0700.091.0	441840	-	475	195	-	-
700	17,0	.0700.170.0	441841	441513	555	209	555	357
700	24,0	.0700.240.0	441842	441514	655	238	655	385
800	8,4	.0800.084.0	441843	-	490	233	-	-
800	16,0	.0800.160.0	441844	441515	590	255	590	449
800	23,0	.0800.230.0	441845	441516	720	284	720	479

Größte Breite ca.	rößte Breite ca. Schweißende		Federrate			
	Außen- durchmesser	Wanddicke	-			
В	d	s	C _r	C _a	C _p	
mm	mm	mm	Nm/bar	Nm/grd	Nm/grd bar	
495	323,9	5,6	9,3	63	1,6	
495	323,9	5,6	9,3	38	2,7	
495	323,9	5,6	9,3	24	4,3	
580	355,6	8,0	20	87	2	
580	355,6	8,0	20	43	4,1	
580	355,6	8,0	20	35	6,4	
640	406,4	8,8	26	194	2,8	
640	406,4	8,8	26	97	5,6	
640	406,4	8,8	26	58	9,3	
700	457	8,0	33	248	3,7	
700	457	8,0	33	124	7,3	
700	457	8,0	33	83	11	
750	508	8,0	41	347	4,9	
750	508	8,0	41	208	8,2	
750	508	8,0	41	116	15	
900	610	8,0	77	493	7,9	
900	610	8,0	77	296	13	
900	610	8,0	77	164	24	
1010	711	8,0	104	703	11	
1010	711	8,0	104	352	21	
1010	711	8,0	104	341	34	
1120	813	10,0	135	1337	16	
1120	813	10,0	135	668	32	
1120	813	10,0	135	401	54	



PN (
------	--

Nenn-	Angulare	Тур	Bestellnummer		W	RN	WRK	
weite	Bewegungs- aufnahme	WRN 06	Standardau	sführung				
	nominal	WRK 06	WRN	WRK	Baulänge	Gewicht	Baulänge	Gewicht
						ca.		ca.
DN	2 α _N	-	-	-	L _o	G	L,	G
_	Grad	-	-	-	mm	kg	mm	kg
900	7,4	.0900.074.0	441846	-	580	379	-	-
900	14,0	.0900.140.0	441847	441517	680	408	680	714
900	20,0	.0900.200.0	441848	441518	810	445	810	751
1000	7,0	.1000.070.0	441849	-	640	434	-	-
1000	13,0	.1000.130.0	441850	441519	745	466	745	861
1000	19,0	.1000.190.0	441851	441520	885	507	885	902
1200	6,2	.1200.062.0	441852	-	640	579	-	-
1200	12,0	.1200.120.0	441853	441521	745	615	745	1184
1200	17,0	.1200.170.0	441854	441522	885	662	885	1231
1400	3,9	.1400.039.0	441855	-	620	741	-	-
1400	7,5	.1400.075.0	441856	-	740	778	-	-
1400	11,0	.1400.110.0	441857	441523	900	827	900	1747
1600	3,3	.1600.033.0	441858	-	720	1094	-	-
1600	6,3	.1600.063.0	441859	-	840	1138	-	-
1600	9,3	.1600.093.0	441860	441524	1000	1201	1000	2585
1800	2,9	.1800.029.0	441861	-	720	1211	-	-
1800	5,6	.1800.056.0	441862	-	840	1258	-	-
1800	8,5	.1800.085.0	441863	-	1000	1325	-	-
2000	2,7	.2000.027.0	441864	-	820	1877	-	-
2000	5,1	.2000.051.0	441865	-	940	1924	-	-
2000	7,8	.2000.078.0	441866	-	1100	2016	-	-

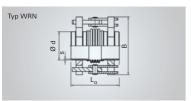
Größte Breite ca.	Schwe	ißende		Federrate			
	Außen- durchmesser	Wanddicke	-				
В	d	s	C _r	C _a	C _p		
mm	mm	mm	Nm/bar	Nm/grd	Nm/grd bar		
1285	914	10,0	215	1896	21		
1285	914	10,0	215	949	41		
1285	914	10,0	215	569	69		
1395	1016	10,0	264	2379	27		
1395	1016	10,0	264	1189	54		
1395	1016	10,0	264	713	90		
1615	1220	10,0	370	3743	38		
1615	1220	10,0	370	1872	75		
1615	1220	10,0	370	1124	126		
1840	1420	15,0	666	8394	58		
1840	1420	15,0	666	4195	117		
1840	1420	15,0	666	2516	195		
2080	1620	15,0	1077	12301	76		
2080	1620	15,0	1077	6150	151		
2080	1620	15,0	1077	3691	252		
2280	1820	15,0	1353	17255	95		
2280	1820	15,0	1353	8628	190		
2280	1820	15,0	1353	5178	316		
2575	2020	15,0	2075	23378	116		
2575	2020	15,0	2075	11694	233		
2575	2020	15.0	2075	7018	388		

DΝ	10
T IV	IU

Nenn- weite	Angulare Bewegungs-	Тур	Bestellni Standardau		W	RN	W	RK
	aufnahme nominal	WRN 10 WRK 10	WRN	WRK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.
DN	2 α _N	-	-	-	L _o	G	L _o	G
-	Grad	-	-	-	mm	kg	mm	kg
50	17,0	.0050.170.0	441867	441525	210	5	210	8
50	27,0	.0050.270.0	441868	441526	225	5	225	9
50	37,0	.0050.370.0	441869	441527	250	6	250	9
65	16,0	.0065.160.0	441870	441528	210	6	210	9
65	29,0	.0065.290.0	441871	441529	235	6	235	10
65	37,0	.0065.370.0	441872	441530	260	7	260	10
80	16,0	.0080.160.0	441873	441531	215	7	215	10
80	25,0	.0080.250.0	441874	441532	235	7	235	11
80	36,0	.0080.360.0	441875	441533	265	7	265	11
100	17,0	.0100.170.0	441876	441534	215	8	215	12
100	26,0	.0100.260.0	441877	441535	240	8	240	13
100	36,0	.0100.360.0	441878	441536	275	9	275	13
125	16,0	.0125.160.0	441879	441537	260	11	260	16
125	25,0	.0125.250.0	441880	441538	285	12	285	17
125	32,0	.0125.320.0	441881	441539	315	12	315	17
150	15,0	.0150.150.0	441882	441540	260	14	260	21
150	27,0	.0150.270.0	441883	441541	305	15	305	22
150	36,0	.0150.360.0	441884	441542	350	17	350	23
200	14,0	.0200.140.0	441885	441543	270	24	270	33
200	26,0	.0200.260.0	441886	441544	320	25	320	34
200	35,0	.0200.350.0	441887	441545	370	28	370	37
250	14,0	.0250.140.0	441888	441546	295	41	295	59
250	21,0	.0250.210.0	441889	441547	330	43	330	61
250	30,0	.0250.300.0	441890	441548	390	47	390	66

Größte Breite ca.	Schwe	ißende		Federrate			
	Außen- durchmesser	Wanddicke	-				
В	d	s	C _r	C _a	C _p		
mm	mm	mm	Nm/bar	Nm/grd	Nm/grd bar		
195	60,3	2,9	0,5	2,2	0,04		
195	60,3	2,9	0,5	1,3	0,06		
195	60,3	2,9	0,5	0,8	0,1		
215	76,1	2,9	0,7	3,2	0,05		
215	76,1	2,9	0,7	1,6	0,1		
215	76,1	2,9	0,7	1,8	0,2		
230	88,9	3,2	0,9	6,3	0,09		
230	88,9	3,2	0,9	3,8	0,1		
230	88,9	3,2	0,9	2,4	0,2		
265	114,3	3,6	1,4	8,2	0,1		
265	114,3	3,6	1,4	4,9	0,2		
265	114,3	3,6	1,4	3,1	0,4		
285	139,7	4,0	1,8	10	0,2		
285	139,7	4,0	1,8	6	0,4		
285	139,7	4,0	1,8	4,3	0,5		
325	168,3	4,0	2,6	25	0,3		
325	168,3	4,0	2,6	13	0,7		
325	168,3	4,0	2,6	8,4	1		
385	219,1	4,5	4,4	39	0,6		
385	219,1	4,5	4,4	20	1,3		
385	219,1	4,5	4,4	15	2		
480	273	5,0	12	52	1,1		
480	273	5,0	12	31	1,8		
480	273	5,0	12	22	3		

06



PN 10

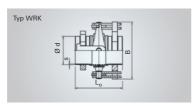
VRK	
Gewicht	
ca.	
G	
kg	
86	
89	
91	
86	
89	
92	
116	
124	
135	
166	
173	
182	
243	
251	
264	
-	
327	
348	
-	
694	
580	
-	
694	
735	

Größte Breite ca.	Schwe	ißende		Federrate		
	Außen- durchmesser	Wanddicke				
В	d	s	C _r	C _a	C _p	
mm	mm	mm	Nm/bar	Nm/grd	Nm/grd bar	
540	323,9	5,6	17	76	1,7	
540	323,9	5,6	17	45	2,9	
540	323,9	5,6	17	32	4	
580	355,6	8,0	20	104	2,1	
580	355,6	8,0	20	62	3,6	
580	355,6	8,0	20	45	5	
640	406,4	8,8	26	397	3,1	
640	406,4	8,8	26	198	6,1	
640	406,4	8,8	26	119	10	
740	457	8,0	33	482	4	
740	457	8,0	33	289	6,7	
740	457	8,0	33	181	11	
790	508	10,0	55	526	5,4	
790	508	10,0	55	316	8,9	
790	508	10,0	55	197	14	
900	610	10,0	77	775	8,2	
900	610	10,0	77	465	14	
900	610	10,0	77	259	24	
1065	711	12,0	131	1381	12	
1065	711	12,0	131	690	24	
1065	711	12,0	131	461	36	
1165	813	12,0	169	1794	17	
1165	813	12,0	169	897	33	
1165	813	12,0	169	538	56	

ALS EINFACHGELENK TYP WRN 10 ... ALS KARDANGELENK TYP WRK 10 ...

PN 10

Nenn- weite	Angulare Bewegungs-	Тур	Bestellnummer WRN WRK Standardausführung		WRN		RK	
	aufnahme nominal	WRN 10 WRK 10	WRN	WRK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.
DN	2 α _N	-	-	-	L _o	G	L _o	G
_	Grad	-	-	-	mm	kg	mm	kg
900	7,4	.0900.074.0	441915	-	635	469	-	-
900	14,0	.0900.140.0	441916	441570	735	505	735	905
900	20,0	.0900.200.0	441917	441571	870	552	870	952
1000	5,7	.1000.057.0	441918	-	745	689	-	-
1000	11,0	.1000.110.0	441919	441572	850	736	850	1338
1000	16,0	.1000.160.0	441920	441573	995	801	995	1403
1200	5,9	.1200.059.0	441921	-	750	885	-	-
1200	11,0	.1200.110.0	441922	-	860	942	-	-
1200	15,0	.1200.150.0	441923	441574	965	1000	965	1971
1400	3,7	.1400.037.0	441924	-	825	1413	-	-
1400	6,9	.1400.069.0	441925	-	950	1458	-	-
1400	9,9	.1400.099.0	441926	441575	1115	1551	1115	3168

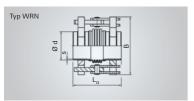

Größte Breite ca.	Schwe	eißende	Federrate		
	Außen- durchmesser	Wanddicke			
В	d	S	C _r	C _a	C _p
mm	mm	mm	Nm/bar	Nm/grd	Nm/grd bar
1315	914	12,0	215	2542	21
1315	914	12,0	215	1272	43
1315	914	12,0	215	764	71
1450	1016	15,0	355	5007	28
1450	1016	15,0	355	2502	56
1450	1016	15,0	355	1502	93
1680	1220	15,0	617	5354	40
1680	1220	15,0	617	2677	80
1680	1220	15,0	617	1786	120
1975	1420	15,0	1041	11650	60
1975	1420	15,0	1041	5827	121
1975	1420	15,0	1041	3496	201

ALS EINFACHGELENK TYP WRN 16 ... ALS KARDANGELENK TYP WRK 16 ...

06

ANGULAR-KOMPENSATOREN MIT SCHWEISSENDEN

Typ WRN


P	N	1	6
			·

Nenn- weite	Angulare Bewegungs- aufnahme	Typ WRN 16	Bestellni Standardau		WRN		W	RK
	nominal	WRK 16	WRN	WRK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.
DN	2 α _N	-	-	-	L _o	G	L _o	G
-	Grad	-	-	-	mm	kg	mm	kg
50	16,0	.0050.160.0	441927	441576	210	5	210	8
50	25,0	.0050.250.0	441928	441577	225	6	225	9
50	34,0	.0050.340.0	441929	441578	250	6	250	9
65	16,0	.0065.160.0	441930	441579	210	6	210	9
65	25,0	.0065.250.0	441931	441580	230	6	230	10
65	34,0	.0065.340.0	441932	441581	265	7	265	11
80	14,0	.0080.140.0	441933	441582	235	9	235	13
80	23,0	.0080.230.0	441934	441583	260	9	260	13
80	32,0	.0080.320.0	441935	441584	295	10	295	13
100	15,0	.0100.150.0	441936	441585	240	10	240	15
100	24,0	.0100.240.0	441937	441586	265	11	265	15
100	33,0	.0100.330.0	441938	441587	305	12	305	16
125	15,0	.0125.150.0	441939	441588	260	12	260	18
125	24,0	.0125.240.0	441940	441589	285	12	285	18
125	33,0	.0125.330.0	441941	441590	335	14	335	19
150	14,0	.0150.140.0	441942	441591	260	17	260	25
150	22,0	.0150.220.0	441943	441592	290	17	290	26
150	31,0	.0150.310.0	441944	441593	345	19	345	28
200	14,0	.0200.140.0	441945	441594	315	39	315	55
200	22,0	.0200.220.0	441946	441595	350	41	350	57
200	31,0	.0200.310.0	441947	441596	405	44	405	60

Größte Breite ca.	Schwe	ißende		Federrate		
	Außen- durchmesser	Wanddicke				
В	d	s	C _r	C _a	C _p	
mm	mm	mm	Nm/bar	Nm/grd	Nm/grd bar	
195	60,3	2,9	0,5	3,7	0,04	
195	60,3	2,9	0,5	2,2	0,06	
195	60,3	2,9	0,5	1,4	0,1	
215	76,1	2,9	0,7	4,9	0,06	
215	76,1	2,9	0,7	2,9	0,1	
215	76,1	2,9	0,7	3,3	0,2	
230	88,9	3,2	0,9	12	0,09	
230	88,9	3,2	0,9	6,9	0,2	
230	88,9	3,2	0,9	4,3	0,3	
265	114,3	3,6	1,4	15	0,2	
265	114,3	3,6	1,4	8,8	0,3	
265	114,3	3,6	1,4	5,5	0,4	
285	139,7	4,0	1,9	18	0,2	
285	139,7	4,0	1,9	11	0,4	
285	139,7	4,0	1,9	8,1	0,7	
325	168,3	4,0	2,6	25	0,3	
325	168,3	4,0	2,6	15	0,6	
325	168,3	4,0	2,7	11	1	
420	219,1	4,5	7,9	63	0,7	
420	219,1	4,5	7,9	38	1,2	
420	219,1	4,5	7,9	24	1,8	

06

ANGULAR-KOMPENSATOREN MIT SCHWEISSENDEN

P	Λ	1	6

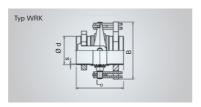
Nenn- weite	Angulare Bewegungs-	Тур	Bestellni Standardau		W	RN	W	RK
	aufnahme nominal	WRN 16 WRK 16	WRN	WRK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.
DN	2 α _N	-	-	-	L _o	G	L _o	G
_	Grad	-	-	-	mm	kg	mm	kg
250	9,1	.0250.091.0	441948	441597	320	48	320	73
250	16,0	.0250.160.0	441949	441598	375	51	375	76
250	23,0	.0250.230.0	441950	441599	430	57	430	82
300	9,6	.0300.096.0	441951	441600	350	67	350	102
300	15,0	.0300.150.0	441952	441601	390	71	390	106
300	22,0	.0300.220.0	441953	441602	470	78	470	113
350	8,8	.0350.088.0	441954	441603	410	83	410	125
350	14,0	.0350.140.0	441955	441604	450	87	450	128
350	20,0	.0350.200.0	441956	441605	530	94	530	136
400	9,3	.0400.093.0	441957	-	425	119	-	-
400	15,0	.0400.150.0	441958	441606	475	128	475	202
400	23,0	.0400.230.0	441959	441607	575	145	575	220
450	9,0	.0450.090.0	441960	-	425	134	-	-
450	14,0	.0450.140.0	441961	441608	475	144	475	239
450	22,0	.0450.220.0	441962	441609	575	163	575	259
500	9,9	.0500.099.0	441963	-	475	173	-	-
500	16,0	.0500.160.0	441964	441610	530	184	530	303
500	22,0	.0500.220.0	441965	441611	610	200	610	319
600	6,3	.0600.063.0	441966	-	520	259	-	-
600	12,0	.0600.120.0	441967	441612	610	283	610	487
600	16,0	.0600.160.0	441968	441613	695	308	695	512

Größte Breite ca.	Schwe	ißende	Federrate		
	Außen- durchmesser	Wanddicke			
В	d	s	C _r	C _{\alpha}	C _p
mm	mm	mm	Nm/bar	Nm/grd	Nm/grd bar
480	273	5,0	12	160	1,1
480	273	5,0	12	80	2,2
480	273	5,0	12	67	3,4
540	323,9	5,6	17	246	1,7
540	323,9	5,6	17	147	2,9
540	323,9	5,6	17	82	5,2
620	355,6	8,0	20	288	2,1
620	355,6	8,0	20	173	3,4
620	355,6	8,0	20	96	6,2
680	406,4	8,8	35	517	3,3
680	406,4	8,8	35	310	5,6
680	406,4	8,8	35	172	10
740	457	8,0	44	654	4,2
740	457	8,0	44	392	7
740	457	8,0	44	218	13
790	508	10,0	55	715	5,6
790	508	10,0	55	429	9,3
790	508	10,0	55	268	15
945	610	12,0	97	2052	8,5
945	610	12,0	97	1026	17
945	610	12,0	97	684	25

Typ WRN

ANGULAR-KOMPENSATOREN MIT SCHWEISSENDEN

ALS EINFACHGELENK TYP WRN 16 ... ALS KARDANGELENK TYP WRK 16 ...


PN 16

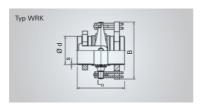
Nenn- weite	Angulare Bewegungs-	Тур	Bestellnummer WRN W Standardausführung		WRN		W	RK
	aufnahme nominal	WRN 16 WRK 16	WRN	WRK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.
DN	2 α _N	-	-	-	L _o	G	L _o	G
_	Grad	-	-	-	mm	kg	mm	kg
700	6,3	.0700.063.0	441969	-	570	348	-	-
700	12,0	.0700.120.0	441970	-	665	377	-	-
700	16,0	.0700.160.0	441971	441614	755	406	755	694
800	6,0	.0800.060.0	441972	-	630	521	-	-
800	11,0	.0800.110.0	441973	-	725	557	-	-
800	15,0	.0800.150.0	441974	441615	820	595	820	1056
900	6,0	.0900.060.0	441975	-	735	792	-	-
900	11,0	.0900.110.0	441976	441616	835	841	835	1519
900	16,0	.0900.160.0	441977	441617	970	913	970	1591
1000	5,7	.1000.057.0	441978	-	755	880	-	-
1000	9,1	.1000.091.0	441979	-	830	925	-	-
1000	14,0	.1000.140.0	441980	441618	980	1015	980	1868

Größte Breite ca.	Schwe	ißende	Federrate				
	Außen- durchmesser	Wanddicke	-				
В	d	s	C _r	C _a	C _p		
mm	mm	mm	Nm/bar	Nm/grd	Nm/grd bar		
1085	711	12,0	131	2524	12		
1085	711	12,0	131	1262	24		
1085	711	12,0	131	841	35		
1220	813	15,0	226	3410	16		
1220	813	15,0	226	1705	32		
1220	813	15,0	226	1136	47		
1380	914	15,0	362	4707	21		
1380	914	15,0	362	2352	43		
1380	914	15,0	362	1411	72		
1490	1016	15,0	445	6654	29		
1490	1016	15,0	445	3994	49		
1490	1016	15,0	445	2218	88		

ANGULAR-KOMPENSATOREN MIT SCHWEISSENDEN ALS EINFACHGELENK TYP WRN 25 ... ALS KARDANGELENK TYP WRK 25 ...

Typ WRN

P	Λ	25
	ıw	~~


Nenn- weite	Angulare Bewegungs-	Тур	Bestellni Standardau		W	RN	W	RK
	aufnahme nominal	WRN 25 WRK 25	WRN	WRK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.
DN	2α _N	-	-	-	L,	G	L _o	G
_	Grad	-	-	-	mm	kg	mm	kg
50	14,0	.0050.140.0	441981	441619	210	6	210	9
50	22,0	.0050.220.0	441982	441620	230	7	230	10
50	30,0	.0050.300.0	441983	441621	260	7	260	10
65	15,0	.0065.150.0	441984	441622	235	7	235	11
65	23,0	.0065.230.0	441985	441623	255	8	255	12
65	29,0	.0065.290.0	441986	441624	275	8	275	12
80	14,0	.0080.140.0	441987	441625	235	9	235	13
80	22,0	.0080.220.0	441988	441626	260	9	260	13
80	28,0	.0080.280.0	441989	441627	285	10	285	13
100	14,0	.0100.140.0	441990	441628	240	12	240	18
100	22,0	.0100.220.0	441991	441629	265	13	265	18
100	27,0	.0100.270.0	441992	441630	290	13	290	19
125	14,0	.0125.140.0	441993	441631	265	14	265	22
125	22,0	.0125.220.0	441994	441632	295	15	295	23
125	27,0	.0125.270.0	441995	441633	325	16	325	23
150	13,0	.0150.130.0	441996	441634	305	29	305	43
150	20,0	.0150.200.0	441997	441635	335	31	335	44
150	27,0	.0150.270.0	441998	441636	385	33	385	47
200	9,1	.0200.091.0	441999	441637	335	44	335	63
200	16,0	.0200.160.0	442000	441638	390	47	390	67
200	22,0	.0200.220.0	442001	441639	440	52	440	71
250	9,0	.0250.090.0	442002	441640	340	55	340	84
250	14,0	.0250.140.0	442003	441641	380	58	380	87
250	20,0	.0250.200.0	442004	441642	440	63	440	92

Größte Breite ca.	Schwe	ißende	Federrate				
	Außen- durchmesser	Wanddicke					
В	d	S	Cr	C α	Ср		
mm	mm	mm	Nm/bar	Nm/grd	Nm/grd bar		
195	60,3	2,9	0,5	6,9	0,04		
195	60,3	2,9	0,5	4,2	0,07		
195	60,3	2,9	0,5	2,6	0,1		
215	76,1	2,9	0,7	8,8	0,07		
215	76,1	2,9	0,7	5,3	0,1		
215	76,1	2,9	0,7	3,8	0,2		
230	88,9	3,2	0,9	14	0,1		
230	88,9	3,2	0,9	8,3	0,2		
230	88,9	3,2	0,9	5,9	0,2		
265	114,3	3,6	1,4	18	0,2		
265	114,3	3,6	1,4	11	0,3		
265	114,3	3,6	1,4	7,5	0,4		
285	139,7	4,0	1,9	31	0,3		
285	139,7	4,0	1,9	19	0,4		
285	139,7	4,0	1,9	13	0,6		
360	168,3	4,0	4,8	44	0,4		
360	168,3	4,0	4,8	26	0,6		
360	168,3	4,0	4,8	16	1		
420	219,1	4,5	8	140	0,7		
420	219,1	4,5	8	70	1,4		
420	219,1	4,5	8	57	2,1		
480	273	5,0	12	245	1,2		
480	273	5,0	12	147	2		
480	273	5,0	12	92	3,2		

06

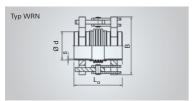
ANGULAR-KOMPENSATOREN MIT SCHWEISSENDEN ALS EINFACHGELENK TYP WRN 25 ... ALS KARDANGELENK TYP WRK 25 ...

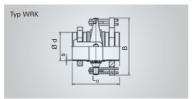
Typ WRN

PN 25

Nenn- weite	Angulare Bewegungs-	Тур	Bestellnummer WRN Standardausführung		RN	W	RK	
	aufnahme nominal	WRN 25 WRK 25	WRN	WRK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.
DN	2 α _N	-	-	-	L _o	G	L _o	G
-	Grad	-	-	-	mm	kg	mm	kg
300	8,7	.0300.087.0	442005	441643	410	105	410	161
300	14,0	.0300.140.0	442006	441644	455	110	455	166
300	18,0	.0300.180.0	442007	441645	520	118	520	173
350	8,8	.0350.088.0	442008	-	455	120	-	-
350	14,0	.0350.140.0	442009	441646	505	127	505	195
350	20,0	.0350.200.0	442010	441647	600	142	600	209
400	6,2	.0400.062.0	442011	-	460	138	-	-
400	12,0	.0400.120.0	442012	441648	535	151	535	244
400	16,0	.0400.160.0	442013	441649	605	164	605	256
450	6,3	.0450.063.0	442014	-	505	221	-	-
450	12,0	.0450.120.0	442015	441650	580	237	580	383
450	16,0	.0450.160.0	442016	441651	655	254	655	401
500	6,2	.0500.062.0	442017	-	525	253	-	-
500	10,0	.0500.100.0	442018	441652	585	270	585	450
500	16,0	.0500.160.0	442019	441653	705	304	705	484
600	6,3	.0600.063.0	442020	-	585	416	-	-
600	10,0	.0600.100.0	442021	-	645	438	-	-
600	15,0	.0600.150.0	442022	441654	770	484	770	792
700	5,9	.0700.059.0	442023	-	735	636	-	-
700	9,3	.0700.093.0	442024	-	800	655	-	-
700	14,0	.0700.140.0	442025	441655	930	716	930	1200

Größte Breite ca.	Schwe	ißende		Federrate			
	Außen- durchmesser	Wanddicke	-				
В	d	s	C _r	C _a	C _p		
mm	mm	mm	Nm/bar	Nm/grd	Nm/grd bar		
580	323,9	5,6	23	313	1,8		
580	323,9	5,6	23	188	3		
580	323,9	5,6	23	118	4,8		
620	355,6	8,0	27	458	2,4		
620	355,6	8,0	27	275	4		
620	355,6	8,0	27	153	7,2		
680	406,4	10,0	35	1055	3,2		
680	406,4	10,0	35	528	6,4		
680	406,4	10,0	35	352	9,6		
785	457	10,0	55	1336	4,2		
785	457	10,0	55	668	8,4		
785	457	10,0	55	445	13		
845	508	12,0	69	1944	6		
845	508	12,0	69	1166	10		
845	508	12,0	69	648	18		
1000	610	15,0	130	2543	9,1		
1000	610	15,0	130	1526	15		
1000	610	15,0	130	848	27		
1150	711	15,0	219	3611	13		
1150	711	15,0	219	2167	21		
1150	711	15,0	219	1203	38		

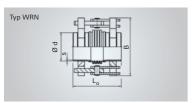

06

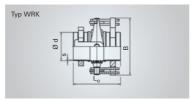

 268
 WITZENMANN
 1501de/19/10/23/pdf
 HYDRA
 1501de/19/10/23/pdf
 WITZENMANN
 269

ne

06

ANGULAR-KOMPENSATOREN MIT SCHWEISSENDEN



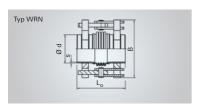


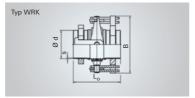
P	Λ	40
	ıw	TU

Nenn- weite	Angulare Bewegungs- aufnahme	Typ WRN 40		Bestellnummer WRN Standardausführung		RN	W	RK
	nominal	WRK 40	WRN	WRK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.
DN	2 α _N	-	-	-	L _o	G	L,	G
-	Grad	-	-	-	mm	kg	mm	kg
50	14,0	.0050.140.0	442026	441656	235	6	235	9
50	21,0	.0050.210.0	442027	441657	255	7	255	10
50	25,0	.0050.250.0	442028	441658	275	7	275	10
65	12,0	.0065.120.0	442029	441659	235	8	235	12
65	19,0	.0065.190.0	442030	441660	260	8	260	12
65	26,0	.0065.260.0	442031	441661	295	9	295	13
80	13,0	.0080.130.0	442032	441662	240	10	240	15
80	20,0	.0080.200.0	442033	441663	265	11	265	15
80	24,0	.0080.240.0	442034	441664	290	11	290	16
100	7,7	.0100.077.0	442035	441665	240	12	240	19
100	12,0	.0100.120.0	442036	441666	265	13	265	20
100	17,0	.0100.170.0	442037	441667	315	14	315	21
125	8,6	.0125.086.0	442038	441668	305	25	305	38
125	13,0	.0125.130.0	442039	441669	335	27	335	39
125	17,0	.0125.170.0	442040	441670	365	28	365	41
150	8,6	.0150.086.0	442041	441671	325	33	325	48
150	13,0	.0150.130.0	442042	441672	355	34	355	50
150	17,0	.0150.170.0	442043	441673	385	36	385	51
200	7,7	.0200.077.0	442044	441674	340	53	340	78
200	12,0	.0200.120.0	442045	441675	380	57	380	82
200	17,0	.0200.170.0	442046	441676	440	61	440	86

Größte Breite ca.	Schwe	ißende		Federrate			
	Außen- durchmesser	Wanddicke					
В	d	s	C _r	C _a	C _p		
mm	mm	mm	Nm/bar	Nm/grd	Nm/grd bar		
195	60,3	2,9	0,5	8,7	0,05		
195	60,3	2,9	0,5	5,2	0,08		
195	60,3	2,9	0,5	3,7	0,1		
215	76,1	2,9	0,7	16	0,08		
215	76,1	2,9	0,7	9,6	0,1		
215	76,1	2,9	0,7	6	0,2		
230	88,9	3,2	0,9	19	0,1		
230	88,9	3,2	0,9	11	0,2		
230	88,9	3,2	0,9	8,2	0,2		
265	114,3	3,6	1,4	45	0,2		
265	114,3	3,6	1,4	27	0,3		
265	114,3	3,6	1,4	22	0,5		
330	139,7	4,0	3,4	72	0,3		
330	139,7	4,0	3,4	43	0,4		
330	139,7	4,0	3,4	31	0,6		
360	168,3	4,0	4,8	96	0,4		
360	168,3	4,0	4,8	58	0,6		
360	168,3	4,0	4,8	41	0,9		
420	219,1	4,5	8	253	0,8		
420	219,1	4,5	8	152	1,3		
420	219,1	4,5	8	95	2,1		

PN	40
----	----

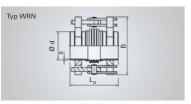

Nenn- weite	Angulare Bewegungs-	Тур	Bestelln Standardau		W	RN	W	RK
Weite	aufnahme nominal	WRN 40 WRK 40	WRN	WRK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.
DN	2 α _N	-	-	-	L _o	G	L _o	G
-	Grad	-	-	-	mm	kg	mm	kg
250	7,8	.0250.078.0	442047	-	405	90	-	-
250	12,0	.0250.120.0	442048	441677	445	95	445	145
250	17,0	.0250.170.0	442049	441678	505	103	505	153
300	5,8	.0300.058.0	442050	-	415	122	-	-
300	9,2	.0300.092.0	442051	441679	460	129	460	199
300	14,0	.0300.140.0	442052	441680	550	142	550	212
350	6,1	.0350.061.0	442053	-	495	180	-	-
350	9,7	.0350.097.0	442054	441681	545	186	545	298
350	14,0	.0350.140.0	442055	441682	640	205	640	317
400	6,1	.0400.061.0	442056	-	505	207	-	-
400	9,7	.0400.097.0	442057	-	560	219	-	-
400	14,0	.0400.140.0	442058	441683	665	243	665	383
450	5,8	.0450.058.0	442059	-	520	255	-	-
450	9,3	.0450.093.0	442060	-	575	270	-	-
450	13,0	.0450.130.0	442061	441684	665	292	665	472
500	4,4	.0500.044.0	442062	-	615	389	-	-
500	7,0	.0500.070.0	442063	-	675	400	-	-
500	11,0	.0500.110.0	442064	441685	785	436	785	707

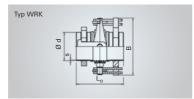

Größte Breite ca.	Schwe	ißende		Federrate		
	Außen- durchmesser	Wanddicke	-			
В	d	s	C _r	C _a	C _p	
mm	mm	mm	Nm/bar	Nm/grd	Nm/grd bar	
520	273	6,3	16	338	1,3	
520	273	6,3	16	203	2,1	
520	273	6,3	16	127	3,3	
580	323,9	7,1	23	833	1,9	
580	323,9	7,1	23	500	3,2	
580	323,9	7,1	23	278	5,7	
675	355,6	8,0	34	884	2,4	
675	355,6	8,0	34	530	4	
675	355,6	8,0	34	295	7,2	
725	406,4	10,0	44	1154	3,5	
725	406,4	10,0	44	692	5,8	
725	406,4	10,0	44	385	10	
815	457	10,0	56	1717	4,7	
815	457	10,0	56	1030	7,9	
815	457	10,0	56	644	13	
890	508	12,0	91	3287	5,8	
890	508	12,0	91	1972	9,6	
890	508	12,0	91	1095	17	

ALS EINFACHGELENK TYP WRN 63 ... ALS KARDANGELENK TYP WRK 63 ...

06

PN 63




Nenn- weite	Angulare Bewegungs-	Тур	Bestellnı Standardau		W	RN	W	RK
	aufnahme nominal	WRN 63 WRK 63	WRN	WRK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.
DN	2 α _N	-	-	-	L _o	G	L _o	G
_	Grad	-	-	-	mm	kg	mm	kg
50	8,9	.0050.089.0	442065	441686	235	8	235	11
50	13,0	.0050.130.0	442066	441687	255	8	255	11
50	16,0	.0050.160.0	442067	441688	275	8	275	11
65	8,6	.0065.086.0	442068	441689	235	9	235	13
65	13,0	.0065.130.0	442069	441690	260	10	260	14
65	17,0	.0065.170.0	442070	441691	295	10	295	14
80	8,2	.0080.082.0	442071	441692	255	12	255	17
80	13,0	.0080.130.0	442072	441693	280	12	280	17
80	16,0	.0080.160.0	442073	441694	305	13	305	18
100	6,6	.0100.066.0	442074	441695	285	25	285	36
100	10,0	.0100.100.0	442075	441696	310	26	310	37
100	14,0	.0100.140.0	442076	441697	350	28	350	39
125	8,4	.0125.084.0	442077	441698	330	31	330	45
125	11,0	.0125.110.0	442078	441699	345	31	345	45
125	16,0	.0125.160.0	442079	441700	395	34	395	48
150	7,1	.0150.071.0	442080	441701	360	43	360	61
150	11,0	.0150.110.0	442081	441702	395	45	395	63
150	14,0	.0150.140.0	442082	441703	430	47	430	65
200	5,3	.0200.053.0	442083	441704	405	86	405	126
200	9,9	.0200.099.0	442084	441705	465	93	465	133
200	13,0	.0200.130.0	442085	441706	525	100	525	140

Größte Breite ca.	Schwe	ißende		Federrate	
	Außen- durchmesser	Wanddicke			
В	d	s	C _r	C _a	C _p
mm	mm	mm	Nm/bar	Nm/grd	Nm/grd bar
195	60,3	2,9	0,5	16	0,04
195	60,3	2,9	0,5	9,5	0,07
195	60,3	2,9	0,5	6,8	0,1
215	76,1	3,2	0,7	28	0,07
215	76,1	3,2	0,7	17	0,1
215	76,1	3,2	0,7	11	0,2
230	88,9	4,0	0,9	37	0,1
230	88,9	4,0	0,9	22	0,2
230	88,9	4,0	0,9	16	0,2
300	114,3	4,5	2,5	86	0,2
300	114,3	4,5	2,5	52	0,3
300	114,3	4,5	2,5	32	0,4
330	139,7	6,3	3,4	90	0,3
330	139,7	6,3	3,4	68	0,4
330	139,7	6,3	3,4	39	0,7
360	168,3	5,6	4,9	178	0,5
360	168,3	5,6	4,9	107	0,8
360	168,3	5,6	4,9	76	1,1
460	219,1	8,0	11	515	0,8
460	219,1	8,0	11	258	1,6
460	219,1	8,0	11	172	2,4

06

ALS EINFACHGELENK TYP WRN 63 ... ALS KARDANGELENK TYP WRK 63 ...

PN 63

Nenn- weite	Angulare Bewegungs-	Тур	Bestellni Standardau		W	RN	W	RK
	aufnahme nominal	WRN 63 WRK 63	WRN	WRK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.
DN	2 α _N	-	-	-	L _o	G	L _o	G
_	Grad	-	-	-	mm	kg	mm	kg
250	5,1	.0250.051.0	442086	-	490	135	-	-
250	8,1	.0250.081.0	442087	441707	535	141	535	204
250	12,0	.0250.120.0	442088	441708	625	154	625	216
300	5,3	.0300.053.0	442089	-	500	195	-	-
300	8,2	.0300.082.0	442090	441709	550	202	550	310
300	11,0	.0300.110.0	442091	441710	625	216	625	324
350	5,2	.0350.052.0	442092	-	570	238	-	-
350	9,7	.0350.097.0	442093	441711	655	259	655	394
350	13,0	.0350.130.0	442094	441712	740	279	740	414
400	3,9	.0400.039.0	442095	-	605	347	-	-
400	7,2	.0400.072.0	442096	-	685	360	-	-
400	9,9	.0400.099.0	442097	441713	790	392	790	603

Größte Breite ca.	Schwe	ißende	Federrate				
	Außen- durchmesser	Wanddicke	-				
В	d	S	C _r	C _a	C _p		
mm	mm	mm	Nm/bar	Nm/grd	Nm/grd bar		
575	273	8,8	16	788	1,4		
575	273	8,8	16	473	2,3		
575	273	8,8	16	263	4,1		
625	323,9	10,0	29	955	2,1		
625	323,9	10,0	29	573	3,5		
625	323,9	10,0	29	358	5,5		
695	355,6	12,0	35	1448	2,9		
695	355,6	12,0	35	724	5,9		
695	355,6	12,0	35	483	8,8		
780	406,4	15,0	59	2378	3,5		
780	406,4	15,0	59	1189	7		
780	406.4	15.0	59	956	11		

LATERAL-KOMPENSATOREN MIT FLANSCHEN TYP LBR, LFR

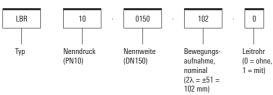
Typenbezeichnung

Die Typenbezeichnung besteht aus 2 Teilen

- 1. Typenreihe, definiert durch 3 Buchstaben
- 2. Nenngröße, definiert durch 10 Ziffern

Beispiel

Typ LBR:


HYDRA Lateral-Kompensator mit drehbaren Flanschen, allseitig beweglich Typ LFR:

HYDRA Lateral-Kompensator mit glatten Festflanschen, allseitig beweglich

Standardausführung/Werkstoffe

Balg vielwandig aus 1.4541 Flansche aus P265GH (1.0425) Betriebstemperatur: bis 400 °C

Typenbezeichnung (beispielhaft)

Bestelltext nach Richtlinie 2014/68/EU "Druckgeräterichtlinie"

Bei Bestellung bitte angeben:

Bei Standardausführung

■ Typenbezeichnung oder Bestellnummer

Mit Werkstoffvarianten

- Typenbezeichnung
- Angabe der Werkstoffe

Für die Prüfung und Dokumentation nach Druckgeräterichtlinie werden folgende Angaben benötigt:

Druckgeräteart nach Art. 1 & 2:

- Behälter Volumen V [I] _____
- Rohrleitung Nennweite DN _____

Mediumeigenschaft nach Art. 13:

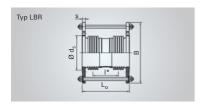
- Gruppe 1 gefährlich
- Gruppe 2 andere

Mediumzustand:

- Gasförmig oder flüssig, wenn PD > 0.5 bar
- Flüssig, wenn PD ≤ 0.5 bar

Auslegungsdaten:

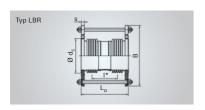
- Max. zul. Druck PS [bar]
- Max./min. zul. Temp. TS [°C]
- Prüfdruck PT [bar] _____


Optional:

■ Kategorie _____

Hinweis

Wir passen den Kompensator an Ihre Anforderungen an, wenn Sie uns die vom Standard abweichenden Maße angeben. Auf Wunsch können Flansche auch mit anderen Bohrbildern / Flanschblattdicken geliefert werden. Hierbei ändert sich ggf. die angegebene Baulänge L0.


TYP LBR 06 ... PN 6

Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LBR 06	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2λ _N	-	-	L,	G	В
-	mm	-	-	mm	kg	mm
50	51	.0050.051.0	439805	250	6	240
50	102	.0050.102.0	439806	360	7	240
50	154	.0050.154.0	439807	470	7	240
50	196	.0050.196.0	439808	560	10	240
65	53	.0065.053.0	439809	260	7	260
65	104	.0065.104.0	439810	370	8	260
65	151	.0065.151.0	439811	470	8	260
65	204	.0065.204.0	439812	580	9	260
80	53	.0080.053.0	439813	275	10	290
80	102	.0080.102.0	439814	385	11	290
80	154	.0080.154.0	439815	495	11	290
80	201	.0080.201.0	439816	595	12	290
100	52	.0100.052.0	439817	275	11	310
100	103	.0100.103.0	439818	385	12	310
100	151	.0100.151.0	439819	485	13	310
100	204	.0100.204.0	439820	595	13	310
125	51	.0125.051.0	439821	310	15	340
125	103	.0125.103.0	439822	450	15	340
125	153	.0125.153.0	439823	580	21	340
125	203	.0125.203.0	439824	710	23	340

Balgmitten- abstand		Flansch ²			Federrate	
	Bohrbild gem. DIN 1092	Bördel- durchmesser	Blattdicke			
l*	PN	d _s	S	C _r	C _λ	C _p
mm	mm	mm	cm ²	N/bar	N/mm	N/mm bar
136	6	90	16	4,9	13	0
246	6	90	16	3,6	4,1	0
356	6	90	16	2,8	2	0
445	6	90	16	2,4	1,3	0
141	6	107	16	7,2	16	0
251	6	107	16	5,3	5,2	0
351	6	107	16	4,3	2,7	0
461	6	107	16	3,5	1,5	0
146	6	122	18	8,9	19	0
256	6	122	18	6,6	6,5	0
366	6	122	18	5,3	3,2	0
466	6	122	18	4,5	2	0
141	6	147	18	14	27	0
251	6	147	18	10	8,8	0
351	6	147	18	8,3	4,5	0
461	6	147	18	6,9	2,6	0
167	6	178	20	16	30	0
307	6	178	20	12	9	0
437	6	178	20	9,3	4,5	0
567	6	178	20	7,7	2,7	0

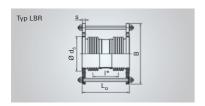
2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LBR 06	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2λ _N	-	-	L _o	G	В
-	mm	-	-	mm	kg	mm
150	53	.0150.053.0	439825	330	18	365
150	101	.0150.101.0	439826	450	19	365
150	144	.0150.144.0	439827	570	24	365
150	195	.0150.195.0	439828	690	27	365
200	51	.0200.051.0	439829	345	25	420
200	100	.0200.100.0	439830	475	27	420
200	153	.0200.153.0	439831	605	37	420
200	198	.0200.198.0	439832	730	42	420
250	50	.0250.050.0	439833	365	35	503
250	102	.0250.102.0	439834	505	38	503
250	153	.0250.153.0	439835	635	53	503
250	212	.0250.212.0	439836	805	62	503
300	50	.0300.050.0	439837	380	48	600
300	101	.0300.101.0	439838	540	52	600
300	152	.0300.152.0	439839	690	56	600
300	196	.0300.196.0	439840	840	88	600
300	296	.0300.296.0	439841	1140	111	600
350	52	.0350.052.0	439842	410	61	650
350	102	.0350.102.0	439843	580	65	650
350	148	.0350.148.0	439844	755	89	650
350	195	.0350.195.0	439845	905	98	650
350	300	.0350.300.0	439846	1255	121	650

Balgmitten- abstand		Flansch ²			Federrate	
	Bohrbild gem. DIN 1092	Bördel- durchmesser	Blattdicke	-		
l*	PN	d ₅	s	C _r	C _{).}	C _p
mm	mm	mm	cm ²	N/bar	N/mm	N/mm bar
166	6	202	20	22	58	0
286	6	202	20	17	20	0
406	6	202	20	14	10	0
526	6	202	20	11	6,1	0
166	6	258	22	42	89	0
296	6	258	22	32	30	0
426	6	258	22	26	15	0
535	6	258	22	22	8,6	0
171	6	312	24	80	111	0
311	6	312	24	61	36	0
441	6	312	24	50	18	0
590	6	312	24	41	9,5	0
191	6	365	24	155	140	0
351	6	365	24	115	43	0
501	6	365	24	93	21	0
630	6	365	24	78	13	0
930	6	365	24	59	5,9	0
215	6	410	26	173	153	0
385	6	410	26	129	49	0
534	6	410	26	103	24	0
684	6	410	26	87	15	0
1034	6	410	26	65	6,6	0

2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP LBR 06 ... PN 6

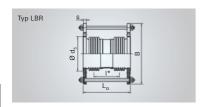

Typ LBR

Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LBR 06	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2λ _N	-	-	L _o	G	В
-	mm	-	-	mm	kg	mm
400	51	.0400.051.0	439847	465	80	724
400	100	.0400.100.0	439848	665	103	724
400	158	.0400.158.0	439849	865	118	724
400	200	.0400.200.0	439850	1015	129	724
400	294	.0400.294.0	439851	1415	160	724
450	50	.0450.050.0	439852	475	89	779
450	97	.0450.097.0	439853	675	114	779
450	152	.0450.152.0	439854	875	131	779
450	192	.0450.192.0	439855	1025	144	779
450	289	.0450.289.0	439856	1390	179	779
500	52	.0500.052.0	439857	495	123	865
500	104	.0500.104.0	439858	710	153	865
500	147	.0500.147.0	439859	860	168	865
500	207	.0500.207.0	439860	1060	188	865
500	289	.0500.289.0	439861	1360	217	865

Balgmitten- abstand		Flansch ²		Federrate		
	Bohrbild gem. DIN 1092	Bördel- durchmesser	Blattdicke			
l*	PN	d ₅	s	C _r	C _λ	C _p
mm	mm	mm	cm ²	N/bar	N/mm	N/mm bar
231	6	465	28	251	232	0
410	6	465	28	187	69	0
610	6	465	28	149	33	0
760	6	465	28	130	21	0
1160	6	465	28	96	9,5	0
236	6	520	28	315	282	0
415	6	520	28	234	86	0
615	6	520	28	187	41	0
765	6	520	28	160	27	0
1120	6	520	28	122	17	0
236	6	570	32	424	389	0
425	6	570	32	313	113	0
575	6	570	32	263	64	0
775	6	570	32	219	36	0
1075	6	570	32	175	19	0

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP LBR 10 ... PN 10



Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LBR 10	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2λ _N	-	-	L,	G	В
-	mm	-	-	mm	kg	mm
50	51	.0050.051.0	439862	260	9	265
50	102	.0050.102.0	439863	370	10	265
50	146	.0050.146.0	439864	465	12	265
50	202	.0050.202.0	439865	615	13	265
65	53	.0065.053.0	439866	270	11	285
65	104	.0065.104.0	439867	380	11	285
65	146	.0065.146.0	439868	480	12	285
65	201	.0065.201.0	439869	630	13	285
80	53	.0080.053.0	439870	300	13	300
80	101	.0080.101.0	439871	420	14	300
80	151	.0080.151.0	439872	540	15	300
80	202	.0080.202.0	439873	660	15	300
100	50	.0100.050.0	439874	290	14	320
100	100	.0100.100.0	439875	420	15	320
100	146	.0100.146.0	439876	550	16	320
100	203	.0100.203.0	439877	730	22	320
125	50	.0125.050.0	439878	315	19	350
125	100	.0125.100.0	439879	435	20	350
125	153	.0125.153.0	439880	555	24	350
125	200	.0125.200.0	439881	665	25	350

Balgmittenab- stand	Flansch ²			Federrate		
	Bohrbild gem. DIN 1092 PN mm	Bördel- durchmesser d _s	Blattdicke s cm²			C _p
				c _r N/bar	C _{\(\lambda\)} N/mm	
246	10	92	19	3,5	4,1	0
345	10	92	19	2,8	2,1	0
495	10	92	19	2,2	1	0
141	10	107	20	6,9	16	0
251	10	107	20	5,2	5,2	0
351	10	107	20	4,2	2,7	0
501	10	107	20	3,3	1,3	0
161	10	122	20	8,2	29	0
281	10	122	20	6,1	9,7	0
401	10	122	20	4,9	4,8	0
521	10	122	20	4,1	2,9	0
159	10	147	22	13	27	0
289	10	147	22	9,4	8,3	0
419	10	147	22	7,4	4	0
599	10	147	22	5,7	1,9	0
151	10	178	22	16	50	0
271	10	178	22	12	16	0
391	10	178	22	9,9	7,9	0
501	10	178	22	8,3	4,8	0

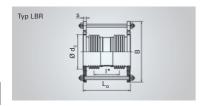
2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP LBR 10 ... PN 10

Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LBR 10	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2 λ _N	-	-	L _o	G	В
-	mm	-	-	mm	kg	mm
150	51	.0150.051.0	439882	340	25	385
150	102	.0150.102.0	439883	470	27	385
150	145	.0150.145.0	439884	590	33	385
150	195	.0150.195.0	439885	710	36	385
200	52	.0200.052.0	439886	365	34	468
200	100	.0200.100.0	439887	515	37	468
200	153	.0200.153.0	439888	675	50	468
200	206	.0200.206.0	439889	855	58	468
250	52	.0250.052.0	439890	395	48	555
250	101	.0250.101.0	439891	555	63	555
250	152	.0250.152.0	439892	715	72	555
250	198	.0250.198.0	439893	885	82	555
300	51	.0300.051.0	439894	405	66	629
300	102	.0300.102.0	439895	565	72	629
300	145	.0300.145.0	439896	715	97	629
300	196	.0300.196.0	439897	865	109	629
300	292	.0300.292.0	439898	1165	133	629
350	50	.0350.050.0	439899	420	81	689
350	100	.0350.100.0	439900	590	87	689
350	149	.0350.149.0	439901	775	111	689
350	195	.0350.195.0	439902	925	121	689
350	296	.0350.296.0	439903	1275	145	689

Balgmitten- abstand		Flansch ²			Federrate		
	Bohrbild gem. DIN 1092	Bördel- durchmesser	Blattdicke	-			
l*	PN	d ₅	s	C _r	C _λ	C _p	
mm	mm	mm	cm ²	N/bar	N/mm	N/mm bar	
161	10	208	24	26	74	0	
291	10	208	24	20	24	0	
411	10	208	24	16	12	0	
531	10	208	24	14	7,3	0	
199	10	258	24	54	92	0	
349	10	258	24	40	31	0	
509	10	258	24	32	15	0	
668	10	258	24	26	8	0	
207	10	320	26	110	112	0	
367	10	320	26	82	37	0	
527	10	320	26	66	18	0	
676	10	320	26	54	10	0	
199	10	370	28	181	202	0	
359	10	370	28	138	65	0	
488	10	370	28	115	32	0	
638	10	370	28	96	19	0	
938	10	370	28	73	9,2	0	
213	10	410	28	207	242	0	
383	10	410	28	160	78	0	
542	10	410	28	127	36	0	
692	10	410	28	108	23	0	
1042	10	410	28	81	10	0	

2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

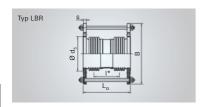

TYP LBR 10 ... PN 10

Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LBR 10	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2λ _N	-	-	L _o	G	В
-	mm	-	-	mm	kg	mm
400	51	.0400.051.0	439904	515	136	785
400	106	.0400.106.0	439905	760	164	785
400	146	.0400.146.0	439906	910	177	785
400	200	.0400.200.0	439907	1110	193	785
400	287	.0400.287.0	439908	1460	222	785
450	51	.0450.051.0	439909	505	160	756
450	98	.0450.098.0	439910	710	196	756
450	153	.0450.153.0	439911	910	221	756
450	195	.0450.195.0	439912	1060	239	756
450	285	.0450.285.0	439913	1410	282	756
500	51	.0500.051.0	439914	510	182	808
500	105	.0500.105.0	439915	735	224	808
500	148	.0500.148.0	439916	885	244	808
500	207	.0500.207.0	439917	1085	270	808
500	306	.0500.306.0	439918	1485	323	808

Balgmitten- abstand		Flansch ²		Federrate		
	Bohrbild gem. DIN 1092	Bördel- durchmesser	Blattdicke			
I*	PN	d ₅	S	C _r	C _λ	C _p
mm	mm	mm	cm ²	N/bar	N/mm	N/mm bar
251	10	465	37	266	398	0
470	10	465	37	193	108	0
620	10	465	37	163	64	0
820	10	465	37	137	38	0
1170	10	465	37	108	19	0
246	10	520	32	297	500	0
425	10	520	32	225	159	0
625	10	520	32	181	77	0
775	10	520	32	159	51	0
1125	10	520	32	121	25	0
236	10	570	34	367	581	0
435	10	570	34	271	163	0
585	10	570	34	227	94	0
785	10	570	34	189	54	0
1185	10	570	34	142	24	0

2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP LBR 16 ... PN 16

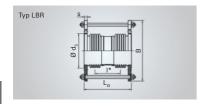


Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LBR 16	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2λ _N	-	-	L,	G	В
-	mm	-	-	mm	kg	mm
50	50	.0050.050.0	439919	280	10	265
50	103	.0050.103.0	439920	410	10	265
50	149	.0050.149.0	439921	530	13	265
50	199	.0050.199.0	439922	680	14	265
65	53	.0065.053.0	439923	290	12	285
65	104	.0065.104.0	439924	410	12	285
65	145	.0065.145.0	439925	520	13	285
65	198	.0065.198.0	439926	680	14	285
80	51	.0080.051.0	439927	300	13	300
80	102	.0080.102.0	439928	430	15	300
80	150	.0080.150.0	439929	550	15	300
80	205	.0080.205.0	439930	720	20	300
100	50	.0100.050.0	439931	310	16	320
100	103	.0100.103.0	439932	460	17	320
100	145	.0100.145.0	439933	590	18	320
100	202	.0100.202.0	439934	790	24	320
125	53	.0125.053.0	439935	345	21	350
125	102	.0125.102.0	439936	475	23	350
125	151	.0125.151.0	439937	595	27	350
125	196	.0125.196.0	439938	715	29	350

Balgmitten- abstand		Flansch ²			Federrate	
	Bohrbild gem. DIN 1092	Bördel- durchmesser	Blattdicke			
l*	PN	d ₅	S	C _r	C _{λ.}	C _p
mm	mm	mm	cm ²	N/bar	N/mm	N/mm bar
151	16	92	19	4,5	20	0
281	16	92	19	3,2	5,8	0
400	16	92	19	2,6	2,9	0
550	16	92	19	2	1,5	0
156	16	107	20	6,6	24	0
276	16	107	20	4,9	7,7	0
386	16	107	20	3,9	4	0
546	16	107	20	3,1	2	0
161	16	122	20	8,3	34	0
291	16	122	20	6,1	11	0
411	16	122	20	4,8	5,5	0
581	16	122	20	3,8	2,8	0
173	16	147	22	12	40	0
323	16	147	22	8,7	12	0
453	16	147	22	6,9	6	0
653	16	147	22	5,3	2,9	0
171	16	178	22	18	67	0
301	16	178	22	14	23	0
421	16	178	22	11	12	0
541	16	178	22	9,5	7,1	0

2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP LBR 16 ... PN 16

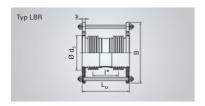


Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LBR 16	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2 λ _N	-	-	L _o	G	В
-	mm	-	-	mm	kg	mm
150	53	.0150.053.0	439939	360	30	413
150	100	.0150.100.0	439940	490	32	413
150	147	.0150.147.0	439941	630	38	413
150	190	.0150.190.0	439942	760	42	413
200	50	.0200.050.0	439943	365	43	500
200	100	.0200.100.0	439944	525	47	500
200	150	.0200.150.0	439945	675	60	500
200	200	.0200.200.0	439946	865	69	500
250	52	.0250.052.0	439947	465	71	589
250	103	.0250.103.0	439948	685	92	589
250	154	.0250.154.0	439949	885	104	589
250	207	.0250.207.0	439950	1135	120	589
300	50	.0300.050.0	439951	500	111	680
300	95	.0300.095.0	439952	670	125	680
300	145	.0300.145.0	439953	870	143	680
300	196	.0300.196.0	439954	1120	164	680
300	296	.0300.296.0	439955	1620	206	680
350	51	.0350.051.0	439956	520	151	667
350	100	.0350.100.0	439957	720	172	667
350	149	.0350.149.0	439958	920	192	667
350	199	.0350.199.0	439959	1170	218	667
350	306	.0350.306.0	439960	1720	274	667

Balgmitten- abstand		Flansch ²			Federrate	
	Bohrbild gem. DIN 1092	Bördel- durchmesser	Blattdicke			
l*	PN	d ₅	s	C _r	C _{λ.}	C _p
mm	mm	mm	cm ²	N/bar	N/mm	N/mm bar
181	16	208	24	33	85	0
311	16	208	24	25	30	0
451	16	208	24	20	14	0
581	16	208	24	17	8,7	0
193	16	258	26	75	137	0
353	16	258	26	55	42	0
503	16	258	26	45	21	0
672	16	258	26	36	11	0
246	16	320	32	117	216	0
445	16	320	32	85	62	0
645	16	320	32	68	31	0
895	16	320	32	55	16	0
235	16	375	37	176	236	0
405	16	375	37	136	89	0
605	16	375	37	109	42	0
855	16	375	37	88	22	0
1355	16	375	37	63	8,8	0
260	16	410	32	182	280	0
460	16	410	32	138	99	0
660	16	410	32	111	50	0
910	16	410	32	88	27	0
1460	16	410	32	62	11	0

2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP LBR 16 ... PN 16

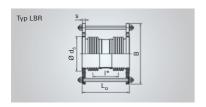


Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LBR 16	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2 λ _N	_	_	L _o	G	В
-	mm	-	-	mm	kg	mm
400	52	.0400.052.0	439961	555	185	723
400	94	.0400.094.0	439962	725	205	723
400	147	.0400.147.0	439963	925	227	723
400	200	.0400.200.0	439964	1125	249	723
400	309	.0400.309.0	439965	1625	305	723
450	50	.0450.050.0	439966	560	247	815
450	104	.0450.104.0	439967	780	276	815
450	155	.0450.155.0	439968	980	303	815
450	203	.0450.203.0	439969	1180	330	815
450	296	.0450.296.0	439970	1630	389	815

Balgmitten- abstand		Flansch ²		Federrate		
	Bohrbild gem. DIN 1092	Bördel- durchmesser	Blattdicke			
l*	PN	d ₅	s	C _r	C _λ	C _p
mm	mm	mm	cm ²	N/bar	N/mm	N/mm bar
260	16	465	34	224	407	0
430	16	465	34	176	166	0
630	16	465	34	142	81	0
830	16	465	34	119	48	0
1330	16	465	34	85	19	0
260	16	520	37	307	516	0
480	16	520	37	233	171	0
680	16	520	37	192	89	0
880	16	520	37	163	54	0
1330	16	520	37	122	24	0

2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP LBR 25 ... PN 25



Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LBR 25	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2λ _N	-	-	L _o	G	В
-	mm	-	-	mm	kg	mm
50	50	.0050.050.0	439971	290	10	265
50	98	.0050.098.0	439972	420	11	265
50	148	.0050.148.0	439973	590	14	265
50	205	.0050.205.0	439974	790	15	265
65	51	.0065.051.0	439975	315	13	285
65	99	.0065.099.0	439976	465	14	285
65	153	.0065.153.0	439977	665	15	285
65	195	.0065.195.0	439978	825	20	285
80	52	.0080.052.0	439979	330	16	300
80	103	.0080.103.0	439980	470	20	300
80	155	.0080.155.0	439981	640	22	300
80	193	.0080.193.0	439982	780	23	300
100	50	.0100.050.0	439983	340	21	335
100	101	.0100.101.0	439984	510	26	335
100	145	.0100.145.0	439985	670	28	335
100	192	.0100.192.0	439986	855	32	335
125	51	.0125.051.0	439987	360	30	398
125	102	.0125.102.0	439988	520	32	398
125	153	.0125.153.0	439989	710	39	398
125	196	.0125.196.0	439990	895	43	398

Balgmitten- abstand		Flansch ²		Federrate		
	Bohrbild gem. DIN 1092	Bördel- durchmesser	Blattdicke			
I* F	PN	PN d _s	s	C _r	C _λ	C _p
mm	mm	mm	cm ²	N/bar	N/mm	N/mm bar
151	25	92	20	4,4	23	0
286	25	92	20	3,2	7	0
455	25	92	20	2,4	2,8	0
655	25	92	20	1,8	1,4	0
185	25	107	22	6,3	26	0
335	25	107	22	4,4	8	0
535	25	107	22	3,2	3,1	0
695	25	107	22	2,6	1,9	0
176	25	122	24	7,8	39	0
316	25	122	24	5,7	13	0
486	25	122	24	4,3	5,4	0
626	25	122	24	3,6	3,3	0
197	25	147	24	14	54	0
367	25	147	24	9,7	16	0
527	25	147	24	7,6	7,8	0
712	25	147	24	6,1	4,3	0
195	25	178	26	23	67	0
355	25	178	26	17	21	0
545	25	178	26	13	8,8	0
714	25	178	26	10	4,9	0

2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP LBR 25 ... PN 25

Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LBR 25	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2 λ _N	-	-	L _o	G	В
-	mm	-	-	mm	kg	mm
150	51	.0150.051.0	439991	375	40	460
150	102	.0150.102.0	439992	545	44	460
150	146	.0150.146.0	439993	745	54	460
150	194	.0150.194.0	439994	950	60	460
200	50	.0200.050.0	439995	445	66	544
200	101	.0200.101.0	439996	645	80	544
200	155	.0200.155.0	439997	915	93	544
200	195	.0200.195.0	439998	1115	103	544
250	51	.0250.051.0	439999	480	122	578
250	101	.0250.101.0	440000	700	147	578
250	149	.0250.149.0	440001	950	166	578
250	204	.0250.204.0	440002	1250	190	578
300	61	.0300.061.0	440003	620	170	634
300	110	.0300.110.0	440004	845	193	634
300	150	.0300.150.0	440005	1045	212	634
300	200	.0300.200.0	440006	1345	240	634
300	302	.0300.302.0	440007	1945	298	634
350	50	.0350.050.0	440008	550	237	735
350	100	.0350.100.0	440009	760	262	735
350	145	.0350.145.0	440010	960	285	735
350	190	.0350.190.0	440011	1210	313	735
350	291	.0350.291.0	440012	1760	375	735

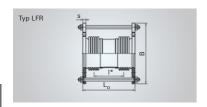
Balgmitten- abstand		Flansch ²			Federrate	
	Bohrbild gem. DIN 1092	Bördel- durchmesser	Blattdicke			
I*	PN	d ₅	s	C _r	C _{).}	C _p
mm	mm	mm	cm ²	N/bar	N/mm	N/mm bar
205	25	208	28	44	85	0
375	25	208	28	33	26	0
575	25	208	28	25	11	0
764	25	208	28	20	6,1	0
241	25	258	32	79	190	0
441	25	258	32	59	59	0
690	25	258	32	44	23	0
890	25	258	32	36	14	0
251	25	320	35	113	250	0
450	25	320	35	83	74	0
700	25	320	35	64	32	0
1000	25	320	35	50	16	0
340	25	375	38	131	213	0
565	25	375	38	99	83	0
765	25	375	38	82	46	0
1065	25	375	38	65	24	0
1665	25	375	38	46	10	0
260	25	410	42	194	363	0
470	25	410	42	147	125	0
670	25	410	42	120	64	0
920	25	410	42	99	35	0
1470	25	410	42	70	14	0

2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

300 *WITZENMANN* 1501de/19/10/23/pdf (HYDRA) 1501de/19/10/23/pdf *WITZENMANN* 300 (HYDRA) 1501de/19/10/23/pdf

Typ LFR

LATERAL-KOMPENSATOR MIT GLATTEN FESTFLANSCHEN, ALLSEITIG BEWEGLICH

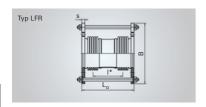

TYP LFR 06 ... PN 6

Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LFR 06	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2 λ _N	-	-	L _o	G	В
-	mm	-	-	mm	kg	mm
50	51	.0050.051.0	440013	265	6	240
50	102	.0050.102.0	440014	375	7	240
50	154	.0050.154.0	440015	485	7	240
50	196	.0050.196.0	440016	575	10	240
65	53	.0065.053.0	440017	275	8	260
65	104	.0065.104.0	440018	385	8	260
65	151	.0065.151.0	440019	485	8	260
65	204	.0065.204.0	440020	595	9	260
80	53	.0080.053.0	440021	285	10	290
80	102	.0080.102.0	440022	395	11	290
80	154	.0080.154.0	440023	505	11	290
80	201	.0080.201.0	440024	605	12	290
100	52	.0100.052.0	440025	285	11	310
100	103	.0100.103.0	440026	395	13	310
100	151	.0100.151.0	440027	495	13	310
100	204	.0100.204.0	440028	605	13	310
125	51	.0125.051.0	440029	320	16	340
125	103	.0125.103.0	440030	460	16	340
125	153	.0125.153.0	440031	590	16	340
125	203	.0125.203.0	440032	720	23	340

Balgmittenabstand	Flan	sch ²		Federrate				
-	Bohrbild gem. DIN 1092							
l*	PN	s	C _r	C _λ	C _p			
mm	mm	cm ²	N/bar	N/mm	N/mm bar			
136	6	16	4,6	13	0			
246	6	16	3,4	4,1	0			
356	6	16	2,7	2	0			
445	6	16	2,4	1,3	0			
141	6	16	6,7	16	0			
251	6	16	5	5,2	0			
351	6	16	4,1	2,7	0			
461	6	16	3,4	1,5	0			
146	6	18	8,4	19	0			
256	6	18	6,3	6,5	0			
366	6	18	5,1	3,2	0			
466	6	18	4,3	2	0			
141	6	18	13	27	0			
251	6	18	9,8	8,8	0			
351	6	18	8	4,5	0			
461	6	18	6,7	2,6	0			
167	6	20	16	30	0			
307	6	20	12	9	0			
437	6	20	9,2	4,5	0			
567	6	20	7,6	2,7	0			

2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP LFR 06 ... PN 6

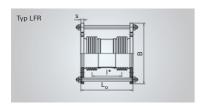


Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LFR 06	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2λ _N	-	-	L _o	G	В
-	mm	-	-	mm	kg	mm
150	53	.0150.053.0	440033	340	19	365
150	101	.0150.101.0	440034	460	19	365
150	151	.0150.151.0	440035	580	21	365
150	202	.0150.202.0	440036	700	27	365
200	51	.0200.051.0	440037	350	26	420
200	100	.0200.100.0	440038	480	27	420
200	153	.0200.153.0	440039	610	29	420
200	198	.0200.198.0	440040	740	43	420
250	50	.0250.050.0	440041	375	36	503
250	102	.0250.102.0	440042	515	39	503
250	153	.0250.153.0	440043	645	41	503
250	212	.0250.212.0	440044	810	63	503
300	50	.0300.050.0	440045	385	50	600
300	101	.0300.101.0	440046	545	54	600
300	152	.0300.152.0	440047	695	58	600
300	196	.0300.196.0	440048	845	90	600
300	296	.0300.296.0	440049	1145	113	600
350	52	.0350.052.0	440050	415	63	650
350	102	.0350.102.0	440051	585	67	650
350	148	.0350.148.0	440052	755	89	650
350	195	.0350.195.0	440053	905	99	650
350	300	.0350.300.0	440054	1255	122	650

Balgmittenabstand	Flan	sch ²		Federrate		
_	Bohrbild gem. DIN 1092	Blattdicke				
l*	PN	s	C _r	C _{λ.}	C _p	
mm	mm	cm ²	N/bar	N/mm	N/mm bar	
166	6	20	22	58	0	
286	6	20	17	20	0	
406	6	20	13	10	0	
526	6	20	11	6,1	0	
166	6	22	41	89	0	
296	6	22	32	30	0	
426	6	22	26	14	0	
535	6	22	22	8,6	0	
171	6	24	80	111	0	
311	6	24	61	36	0	
441	6	24	50	18	0	
590	6	24	41	9,5	0	
191	6	24	155	140	0	
351	6	24	115	43	0	
501	6	24	93	21	0	
630	6	24	77	13	0	
930	6	24	59	5,9	0	
215	6	26	173	153	0	
385	6	26	129	49	0	
534	6	26	102	24	0	
684	6	26	87	15	0	
1034	6	26	64	6,6	0	

2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP LFR 06 ... PN 6



Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LFR 06	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2 λ _N	-	-	L _o	G	В
-	mm	-	-	mm	kg	mm
400	51	.0400.051.0	440055	460	83	724
400	100	.0400.100.0	440056	665	103	724
400	158	.0400.158.0	440057	865	119	724
400	200	.0400.200.0	440058	1015	131	724
400	294	.0400.294.0	440059	1415	162	724
450	50	.0450.050.0	440060	470	92	779
450	97	.0450.097.0	440061	675	115	779
450	152	.0450.152.0	440062	875	132	779
450	192	.0450.192.0	440063	1025	145	779
450	289	.0450.289.0	440064	1385	180	779
500	52	.0500.052.0	440065	490	127	865
500	104	.0500.104.0	440066	705	153	865
500	147	.0500.147.0	440067	855	168	865
500	207	.0500.207.0	440068	1055	188	865
500	289	.0500.289.0	440069	1355	218	865

Balgmittenabstand	Flan	sch ²		Federrate			
	Bohrbild gem. DIN 1092	Blattdicke	-				
I *	PN	S	C _r	C _λ	C _p		
mm	mm	cm ²	N/bar	N/mm	N/mm bar		
231	6	28	251	232	0		
410	6	28	187	69	0		
610	6	28	149	33	0		
760	6	28	130	21	0		
1160	6	28	96	9,5	0		
236	6	28	315	282	0		
415	6	28	234	86	0		
615	6	28	187	41	0		
765	6	28	160	27	0		
1120	6	28	122	17	0		
236	6	32	424	389	0		
425	6	32	313	113	0		
575	6	32	268	64	0		
775	6	32	223	36	0		
1075	6	32	178	19	0		

2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

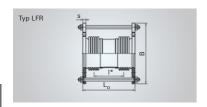
TYP LFR 10 ... PN 10

Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LFR 10	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2λ _N	-	-	L,	G	В
-	mm	-	-	mm	kg	mm
50	51	.0050.051.0	440070	270	9	265
50	102	.0050.102.0	440071	380	10	265
50	146	.0050.146.0	440072	475	12	265
50	202	.0050.202.0	440073	625	13	265
65	53	.0065.053.0	440074	280	11	285
65	104	.0065.104.0	440075	390	12	285
65	146	.0065.146.0	440076	490	12	285
65	201	.0065.201.0	440077	640	14	285
80	53	.0080.053.0	440078	310	14	300
80	101	.0080.101.0	440079	430	14	300
80	151	.0080.151.0	440080	550	15	300
80	202	.0080.202.0	440081	670	16	300
100	50	.0100.050.0	440082	300	14	320
100	100	.0100.100.0	440083	430	16	320
100	146	.0100.146.0	440084	560	16	320
100	203	.0100.203.0	440085	740	22	320
125	50	.0125.050.0	440086	320	19	350
125	100	.0125.100.0	440087	440	20	350
125	153	.0125.153.0	440088	560	21	350
125	200	.0125.200.0	440089	670	23	350

Balgmittenabstand	Flan	sch ²		Federrate			
-	Bohrbild gem. DIN 1092	Blattdicke	_				
l*	PN	s	C _r	C _λ	C _p		
mm	mm	cm ²	N/bar	N/mm	N/mm bar		
136	16	19	4,6	13	0		
246	16	19	3,4	4,1	0		
345	16	19	2,8	2,1	0		
495	16	19	2,2	1	0		
141	16	20	6,7	16	0		
251	16	20	5	5,2	0		
351	16	20	4,1	2,7	0		
501	16	20	3,2	1,3	0		
161	16	20	8	29	0		
281	16	20	6	9,7	0		
401	16	20	4,8	4,8	0		
521	16	20	4	2,9	0		
159	16	22	13	27	0		
289	16	22	9,2	8,3	0		
419	16	22	7,2	4	0		
599	16	22	5,6	1,9	0		
151	16	22	16	50	0		
271	16	22	12	16	0		
391	16	22	9,7	7,9	0		
501	16	22	8,2	4,8	0		

2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP LFR 10 ... PN 10

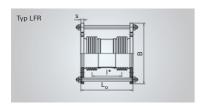


Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LFR 10	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2 λ _N	-	-	L _o	G	В
-	mm	-	-	mm	kg	mm
150	51	.0150.051.0	440090	345	26	385
150	102	.0150.102.0	440091	475	27	385
150	151	.0150.151.0	440092	595	29	385
150	202	.0150.202.0	440093	715	36	385
200	52	.0200.052.0	440094	370	35	468
200	100	.0200.100.0	440095	520	37	468
200	153	.0200.153.0	440096	680	41	468
200	206	.0200.206.0	440097	860	58	468
250	52	.0250.052.0	440098	400	50	555
250	101	.0250.101.0	440099	560	54	555
250	152	.0250.152.0	440100	720	73	555
250	198	.0250.198.0	440101	885	83	555
300	51	.0300.051.0	440102	400	68	629
300	102	.0300.102.0	440103	560	74	629
300	145	.0300.145.0	440104	710	97	629
300	196	.0300.196.0	440105	860	110	629
300	292	.0300.292.0	440106	1160	134	629
350	50	.0350.050.0	440107	415	82	689
350	100	.0350.100.0	440108	585	90	689
350	149	.0350.149.0	440109	770	111	689
350	195	.0350.195.0	440110	920	121	689
350	296	.0350.296.0	440111	1270	146	689

Balgmittenabstand	Flans	sch ²		Federrate	
	Bohrbild gem. DIN 1092	Blattdicke			
l*	PN	S	C _r	C _λ	C _p
mm	mm	cm ²	N/bar	N/mm	N/mm bar
161	16	24	26	74	0
291	16	24	20	24	0
411	16	24	16	12	0
531	16	24	14	7,3	0
199	10	24	53	92	0
349	10	24	40	31	0
509	10	24	31	15	0
668	10	24	25	8	0
207	10	26	107	112	0
367	10	26	81	37	0
527	10	26	65	18	0
676	10	26	54	10	0
199	10	28	188	202	0
359	10	28	142	65	0
488	10	28	115	32	0
638	10	28	96	19	0
938	10	28	73	9,2	0
213	10	28	215	242	0
383	10	28	160	78	0
542	10	28	127	36	0
692	10	28	110	23	0
1042	10	28	81	10	0

2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP LFR 10 ... PN 10

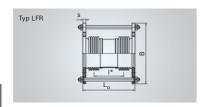


Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LFR 10	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2λ _N	-	-	L _o	G	В
-	mm	-	-	mm	kg	mm
400	51	.0400.051.0	440112	510	139	785
400	106	.0400.106.0	440113	750	163	785
400	146	.0400.146.0	440114	900	176	785
400	200	.0400.200.0	440115	1100	193	785
400	287	.0400.287.0	440116	1450	222	785
450	51	.0450.051.0	440117	500	164	756
450	98	.0450.098.0	440118	700	196	756
450	153	.0450.153.0	440119	900	221	756
450	195	.0450.195.0	440120	1050	239	756
450	285	.0450.285.0	440121	1400	284	756
500	51	.0500.051.0	440122	505	187	808
500	105	.0500.105.0	440123	730	223	808
500	148	.0500.148.0	440124	880	243	808
500	207	.0500.207.0	440125	1080	270	808
500	306	.0500.306.0	440126	1480	325	808

Balgmittenabstand	Flan	sch ²	Federrate			
-	Bohrbild gem. DIN 1092	Blattdicke	-			
I *	PN	s	C _r	C _λ	C _p	
mm	mm	cm ²	N/bar	N/mm	N/mm bar	
251	10	37	266	398	0	
470	10	37	193	108	0	
620	10	37	163	64	0	
820	10	37	137	38	0	
1170	10	37	108	19	0	
246	10	32	307	500	0	
425	10	32	225	159	0	
625	10	32	181	77	0	
775	10	32	159	51	0	
1125	10	32	121	25	0	
236	10	34	367	581	0	
435	10	34	271	163	0	
585	10	34	227	94	0	
785	10	34	189	54	0	
1185	10	34	142	24	0	

2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP LFR 16 ... PN 16



Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LFR 16	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2 λ _N	-	-	L,	G	В
-	mm	-	-	mm	kg	mm
50	50	.0050.050.0	440127	290	10	265
50	103	.0050.103.0	440128	420	11	265
50	149	.0050.149.0	440129	535	12	265
50	199	.0050.199.0	440130	685	14	265
65	53	.0065.053.0	440131	300	11	285
65	104	.0065.104.0	440132	420	13	285
65	145	.0065.145.0	440133	530	13	285
65	198	.0065.198.0	440134	690	15	285
80	51	.0080.051.0	440135	310	14	300
80	102	.0080.102.0	440136	440	15	300
80	150	.0080.150.0	440137	560	15	300
80	205	.0080.205.0	440138	730	19	300
100	50	.0100.050.0	440139	315	16	320
100	103	.0100.103.0	440140	465	17	320
100	145	.0100.145.0	440141	595	17	320
100	202	.0100.202.0	440142	795	23	320
125	53	.0125.053.0	440143	350	22	350
125	102	.0125.102.0	440144	480	24	350
125	151	.0125.151.0	440145	600	25	350
125	196	.0125.196.0	440146	720	29	350

Balgmittenabstand	Flan	sch ²	Federrate			
-	Bohrbild gem. DIN 1092	Blattdicke	-			
l*	PN	s	C _r	C _λ .	C _p	
mm	mm	cm ²	N/bar	N/mm	N/mm bar	
151	16	19	4,4	20	0	
281	16	19	3,2	5,8	0	
400	16	19	2,5	2,9	0	
550	16	19	2	1,5	0	
156	16	20	6,4	24	0	
276	16	20	4,8	7,7	0	
386	16	20	3,9	4	0	
546	16	20	3	2	0	
161	16	20	8,1	34	0	
291	16	20	5,9	11	0	
411	16	20	4,8	5,5	0	
581	16	20	3,7	2,8	0	
173	16	22	12	40	0	
323	16	22	8,5	12	0	
453	16	22	6,8	6	0	
653	16	22	5,2	2,9	0	
171	16	22	18	67	0	
301	16	22	14	23	0	
421	16	22	11	12	0	
541	16	22	9,5	7,1	0	

2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

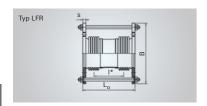
TYP LFR 16 ... PN 16

Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LFR 16	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2 λ _N	-	-	L _o	G	В
-	mm	-	-	mm	kg	mm
150	53	.0150.053.0	440147	365	31	413
150	100	.0150.100.0	440148	495	32	413
150	153	.0150.153.0	440149	635	36	413
150	194	.0150.194.0	440150	765	42	413
200	50	.0200.050.0	440151	370	44	500
200	100	.0200.100.0	440152	530	48	500
200	150	.0200.150.0	440153	680	52	500
200	200	.0200.200.0	440154	870	69	500
250	52	.0250.052.0	440155	460	73	589
250	103	.0250.103.0	440156	680	91	589
250	154	.0250.154.0	440157	880	104	589
250	207	.0250.207.0	440158	1130	121	589
300	50	.0300.050.0	440159	495	110	680
300	95	.0300.095.0	440160	665	125	680
300	145	.0300.145.0	440161	865	143	680
300	196	.0300.196.0	440162	1115	165	680
300	296	.0300.296.0	440163	1615	208	680
350	51	.0350.051.0	440164	515	151	667
350	100	.0350.100.0	440165	715	172	667
350	149	.0350.149.0	440166	915	193	667
350	199	.0350.199.0	440167	1165	220	667
350	306	.0350.306.0	440168	1715	277	667

Balgmittenabstand	Flan	sch ²	Federrate			
-	Bohrbild gem. DIN 1092	Blattdicke	_			
l*	PN	S	C _r	C _λ	C _p	
mm	mm	cm ²	N/bar	N/mm	N/mm bar	
181	16	24	33	85	0	
311	16	24	25	30	0	
451	16	24	20	14	0	
581	16	24	17	8,7	0	
193	16	26	75	137	0	
353	16	26	55	42	0	
503	16	26	45	21	0	
672	16	26	36	11	0	
246	16	32	117	216	0	
445	16	32	87	62	0	
645	16	32	69	31	0	
895	16	32	55	16	0	
235	16	37	176	236	0	
405	16	37	136	89	0	
605	16	37	109	42	0	
855	16	37	88	22	0	
1355	16	37	63	8,8	0	
260	16	32	182	280	0	
460	16	32	138	99	0	
660	16	32	111	50	0	
910	16	32	88	27	0	
1460	16	32	62	11	0	

2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

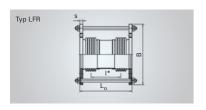
TYP LFR 16 ... PN 16



Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LFR 10	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2λ _N	-	_	L _o	G	В
-	mm	-	-	mm	kg	mm
400	52	.0400.052.0	440169	545	183	723
400	94	.0400.094.0	440170	715	202	723
400	147	.0400.147.0	440171	915	225	723
400	200	.0400.200.0	440172	1115	248	723
400	309	.0400.309.0	440173	1615	306	723
450	50	.0450.050.0	440174	550	243	815
450	104	.0450.104.0	440175	770	274	815
450	155	.0450.155.0	440176	970	301	815
450	203	.0450.203.0	440177	1170	329	815
450	296	.0450.296.0	440178	1620	391	815

Balgmittenabstand	Flan	sch ²	Federrate				
	Bohrbild gem. DIN 1092	Blattdicke					
I *	PN	s	C _r	C _λ	C _p		
mm	mm	cm ²	N/bar	N/mm	N/mm bar		
260	16	34	224	407	0		
430	16	34	180	166	0		
630	16	34	145	81	0		
830	16	34	121	48	0		
1330	16	34	86	19	0		
260	16	37	316	516	0		
480	16	37	239	171	0		
680	16	37	195	89	0		
880	16	37	165	54	0		
1330	16	37	122	24	0		

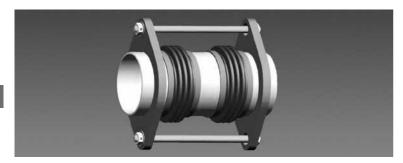
2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0


TYP LFR 25 ... PN 25

Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LFR 25	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2 λ _N	-	-	L _o	G	В
-	mm	-	-	mm	kg	mm
50	50	.0050.050.0	440179	300	10	265
50	98	.0050.098.0	440180	430	11	265
50	148	.0050.148.0	440181	600	13	265
50	205	.0050.205.0	440182	800	15	265
65	51	.0065.051.0	440183	320	14	285
65	99	.0065.099.0	440184	470	14	285
65	153	.0065.153.0	440185	670	16	285
65	195	.0065.195.0	440186	830	19	285
80	52	.0080.052.0	440187	335	16	300
80	103	.0080.103.0	440188	475	18	300
80	155	.0080.155.0	440189	645	21	300
80	193	.0080.193.0	440190	785	22	300
100	50	.0100.050.0	440191	345	22	335
100	101	.0100.101.0	440192	515	25	335
100	145	.0100.145.0	440193	675	27	335
100	192	.0100.192.0	440194	860	30	335
125	51	.0125.051.0	440195	365	30	398
125	102	.0125.102.0	440196	525	33	398
125	153	.0125.153.0	440197	715	39	398
125	196	.0125.196.0	440198	900	43	398

Balgmittenabstand	Flan	sch ²	Federrate			
	Bohrbild gem. DIN 1092	Blattdicke	-			
l*	PN	S	C _r	C _λ .	C _p	
mm	mm	cm ²	N/bar	N/mm	N/mm bar	
156	40	20	4,3	23	0	
286	40	20	3,1	7	0	
455	40	20	2,3	2,8	0	
655	40	20	1,8	1,4	0	
185	40	22	6,1	26	0	
335	40	22	4,4	8	0	
535	40	22	3,2	3,1	0	
695	40	22	2,6	1,9	0	
176	40	24	7,8	39	0	
316	40	24	5,7	13	0	
486	40	24	4,3	5,4	0	
626	40	24	3,6	3,3	0	
197	40	24	13	54	0	
367	40	24	9,6	16	0	
527	40	24	7,5	7,8	0	
712	40	24	6,1	4,3	0	
195	40	26	23	67	0	
355	40	26	17	21	0	
545	40	26	13	8,8	0	
714	40	26	10	4,9	0	

2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0


Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LFR 25	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2λ _N	-	-	L _o	G	В
-	mm	-	-	mm	kg	mm
150	51	.0150.051.0	440199	370	42	460
150	102	.0150.102.0	440200	540	45	460
150	151	.0150.151.0	440201	740	54	460
150	194	.0150.194.0	440202	945	60	460
200	50	.0200.050.0	440203	440	68	544
200	101	.0200.101.0	440204	640	80	544
200	155	.0200.155.0	440205	910	94	544
200	195	.0200.195.0	440206	1110	104	544
250	51	.0250.051.0	440207	475	125	578
250	101	.0250.101.0	440208	695	147	578
250	149	.0250.149.0	440209	945	167	578
250	204	.0250.204.0	440210	1245	192	578
300	61	.0300.061.0	440211	610	169	634
300	110	.0300.110.0	440212	835	191	634
300	150	.0300.150.0	440213	1035	211	634
300	200	.0300.200.0	440214	1335	240	634
300	302	.0300.302.0	440215	1935	300	634
350	50	.0350.050.0	440216	545	237	735
350	100	.0350.100.0	440217	755	261	735
350	145	.0350.145.0	440218	955	285	735
350	190	.0350.190.0	440219	1205	314	735
350	291	.0350.291.0	440220	1755	378	735

Balgmittenabstand	Flans	sch ²	Federrate		
-	Bohrbild gem. DIN 1092				
l*	PN	S	C _r	C _{i.}	C _p
mm	mm	cm ²	N/bar	N/mm	N/mm bar
205	40	28	45	85	0
375	40	28	33	26	0
575	40	28	25	11	0
764	40	28	20	6,1	0
241	25	32	79	190	0
441	25	32	59	59	0
690	25	32	44	23	0
890	25	32	36	14	0
251	25	35	117	250	0
450	25	35	85	74	0
700	25	35	64	32	0
1000	25	35	50	16	0
340	25	38	131	213	0
565	25	38	101	83	0
765	25	38	83	46	0
1065	25	38	66	24	0
1665	25	38	46	10	0
260	25	42	194	363	0
470	25	42	150	125	0
670	25	42	122	64	0
920	25	42	99	35	0
1470	25	42	70	14	0

2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

06

LATERAL-KOMPENSATOREN MIT SCHWEISSENDEN TYP LRR, LRK, LRN

Typenbezeichnung

Die Typenbezeichnung besteht aus 2 Teilen

- 1. Typenreihe, definiert durch 3 Buchstaben
- 2. Nenngröße, definiert durch 10 Ziffern

Beispiel


Typ LRR: HYDRA Lateral-Kompensator mit Schweißenden, allseitig beweglich Typ LRN: HYDRA Lateral-Kompensator mit Schweißenden, einseitig beweglich Typ LRK: HYDRA Lateral-Kompensator mit Schweißenden, allseitig beweglich

Standardausführung/Werkstoffe

Balg vielwandig aus 1.4541 Schweißenden bis DN 300 aus P235GH (1.0345) Schweißenden ab DN 350 aus P265GH (1.0425)

Betriebstemperatur: bis 400 °C

Typenbezeichnung (beispielhaft)

Bestelltext nach Richtlinie 2014/68/EU "Druckgeräterichtlinie"

Bei Bestellung bitte angeben:

Bei Standardausführung

■ Typenbezeichnung oder Bestellnummer

Mit Werkstoffvarianten

- Typenbezeichnung
- Angabe der Werkstoffe

Für die Prüfung und Dokumentation nach Druckgeräterichtlinie werden folgende Angaben benötigt:

Druckgeräteart nach Art. 1 & 2:

- Behälter Volumen V [I]
- Rohrleitung Nennweite DN _____

Mediumeigenschaft nach Art. 13:

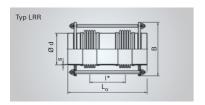
- Gruppe 1 gefährlich
- Gruppe 2 andere

Mediumzustand:

- Gasförmig oder flüssig, wenn PD > 0.5 bar
- Flüssig, wenn PD ≤ 0.5 bar

Auslegungsdaten:

- Max. zul. Druck PS [bar] _____
- Max./min. zul. Temp. TS [°C]
- Prüfdruck PT [bar] _____


Optional:

■ Kategorie _____

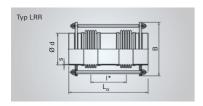
Hinweis

Wir passen den Kompensator an Ihre Anforderungen an, wenn Sie uns die vom Standard abweichenden Maße angeben.

TYP LRR 06 ... PN 6

Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LRR 06	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2λ _N	-	-	L _o	G	В
-	mm	-	-	mm	kg	mm
50	51	.0050.051.0	440579	360	5	205
50	102	.0050.102.0	440580	470	5	205
50	154	.0050.154.0	440581	580	6	205
50	196	.0050.196.0	440582	670	8	205
65	53	.0065.053.0	440583	370	6	225
65	104	.0065.104.0	440584	480	6	225
65	151	.0065.151.0	440585	580	7	225
65	204	.0065.204.0	440586	690	8	225
80	53	.0080.053.0	440587	380	6	240
80	102	.0080.102.0	440588	490	7	240
80	154	.0080.154.0	440589	600	8	240
80	201	.0080.201.0	440590	700	8	240
100	52	.0100.052.0	440591	380	8	265
100	103	.0100.103.0	440592	490	8	265
100	151	.0100.151.0	440593	590	9	265
100	204	.0100.204.0	440594	700	10	265
125	51	.0125.051.0	440595	440	9	290
125	103	.0125.103.0	440596	580	10	290
125	153	.0125.153.0	440597	710	11	290
125	203	.0125.203.0	440598	840	12	290

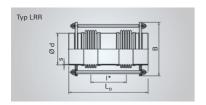
Balgmittenabstand	Schweißende		Federrate			
_	Außen- durchmesser					
l*	d	s	C _r	C _λ	C _p	
mm	mm	mm	N/bar	N/mm	N/mm bar	
136	60,3	2,9	4,2	13	0	
246	60,3	2,9	3,2	4,1	0	
356	60,3	2,9	2,6	2	0	
445	60,3	2,9	2,2	1,3	0	
141	76,1	2,9	6,2	16	0	
251	76,1	2,9	4,7	5,2	0	
351	76,1	2,9	3,9	2,7	0	
461	76,1	2,9	3,3	1,5	0	
146	88,9	3,2	7,7	19	0	
256	88,9	3,2	5,9	6,5	0	
366	88,9	3,2	4,8	3,2	0	
466	88,9	3,2	4,1	2	0	
141	114,3	3,6	12	27	0	
251	114,3	3,6	9,2	8,8	0	
351	114,3	3,6	7,6	4,5	0	
461	114,3	3,6	6,4	2,6	0	
183	139,7	4	14	30	0	
323	139,7	4	11	9	0	
453	139,7	4	8,7	4,5	0	
583	139,7	4	7,3	2,7	0	


TYP LRR 06 ... PN 6

LATERAL-KOMPENSATOR MIT SCHWEISSENDEN, ALLSEITIG BEWEGLICH

Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LRR 06	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2λ _N	-	-	L _o	G	В
-	mm	-	-	mm	kg	mm
150	53	.0150.053.0	440599	455	15	320
150	101	.0150.101.0	440600	575	16	320
150	151	.0150.151.0	440601	695	17	320
150	202	.0150.202.0	440602	815	19	320
200	51	.0200.051.0	440603	490	23	375
200	100	.0200.100.0	440604	620	25	375
200	153	.0200.153.0	440605	750	27	375
200	198	.0200.198.0	440606	880	40	375
250	50	.0250.050.0	440607	520	37	465
250	102	.0250.102.0	440608	660	40	465
250	153	.0250.153.0	440609	790	42	465
250	212	.0250.212.0	440610	960	64	465
300	50	.0300.050.0	440611	555	49	550
300	101	.0300.101.0	440612	715	53	550
300	152	.0300.152.0	440613	865	57	550
300	196	.0300.196.0	440614	1020	89	550
300	296	.0300.296.0	440615	1320	112	550
350	52	.0350.052.0	440616	585	52	590
350	102	.0350.102.0	440617	755	56	590
350	148	.0350.148.0	440618	925	78	590
350	195	.0350.195.0	440619	1075	88	590
350	300	.0350.300.0	440620	1425	111	590

Balgmittenabstand	Schwe	ißende		Federrate	Federrate	
-	Außen- durchmesser					
l*	d	S	C _r	C _λ	C _p	
mm	mm	mm	N/bar	N/mm	N/mm bar	
182	168,3	4	19	58	0	
302	168,3	4	15	20	0	
422	168,3	4	12	10	0	
542	168,3	4	11	6,1	0	
186	219,1	4,5	37	89	0	
316	219,1	4,5	29	30	0	
446	219,1	4,5	24	14	0	
535	219,1	4,5	20	8,6	0	
191	273	5	72	111	0	
331	273	5	57	36	0	
461	273	5	47	18	0	
590	273	5	38	9,5	0	
215	323,9	5,6	137	140	0	
375	323,9	5,6	105	43	0	
525	323,9	5,6	87	21	0	
630	323,9	5,6	73	13	0	
930	323,9	5,6	56	5,9	0	
239	355,6	8	157	153	0	
409	355,6	8	120	49	0	
534	355,6	8	96	24	0	
684	355,6	8	82	15	0	
1034	355,6	8	62	6,6	0	


TYP LRR 06 ... PN 6

Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LRR 06	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2λ _N	-	-	L _o	G	В
-	mm	-	-	mm	kg	mm
400	51	.0400.051.0	440621	645	75	665
400	100	.0400.100.0	440622	850	95	665
400	158	.0400.158.0	440623	1050	111	665
400	200	.0400.200.0	440624	1200	123	665
400	294	.0400.294.0	440625	1600	154	665
450	50	.0450.050.0	440626	655	84	725
450	97	.0450.097.0	440627	860	106	725
450	152	.0450.152.0	440628	1060	123	725
450	192	.0450.192.0	440629	1210	136	725
450	289	.0450.289.0	440630	1570	171	725
500	52	.0500.052.0	440631	750	128	820
500	104	.0500.104.0	440632	965	153	820
500	147	.0500.147.0	440633	1115	168	820
500	207	.0500.207.0	440634	1315	188	820
500	289	.0500.289.0	440635	1615	218	820

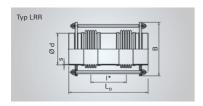
Balgmittenabstand	Schwe	eißende		Federrate		
	Außen- durchmesser	Wanddicke	-			
l*	d	S	C _r	C _{λ.}	C _p	
mm	mm	mm	N/bar	N/mm	N/mm bar	
255	406,4	8,8	235	232	0	
410	406,4	8,8	178	69	0	
610	406,4	8,8	143	33	0	
760	406,4	8,8	123	21	0	
1210	406,4	8,8	92	9,5	0	
260	457	8	286	282	0	
415	457	8	218	86	0	
615	457	8	176	41	0	
765	457	8	155	27	0	
1120	457	8	119	17	0	
264	508	8	375	389	0	
425	508	8	286	113	0	
575	508	8	248	64	0	
775	508	8	209	36	0	
1075	508	8	168	19	0	

TYP LRR 10 ... PN 10

Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LRR 10	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2λ _N	-	-	L _o	G	В
-	mm	-	-	mm	kg	mm
50	51	.0050.051.0	440636	360	5	205
50	102	.0050.102.0	440637	470	5	205
50	149	.0050.149.0	440638	580	6	205
50	202	.0050.202.0	440639	720	9	205
65	53	.0065.053.0	440640	370	6	225
65	104	.0065.104.0	440641	480	6	225
65	146	.0065.146.0	440642	580	7	225
65	201	.0065.201.0	440643	730	8	225
80	53	.0080.053.0	440644	420	7	240
80	101	.0080.101.0	440645	540	8	240
80	151	.0080.151.0	440646	660	9	240
80	202	.0080.202.0	440647	780	10	240
100	50	.0100.050.0	440648	410	9	265
100	100	.0100.100.0	440649	540	10	265
100	146	.0100.146.0	440650	670	11	265
100	203	.0100.203.0	440651	850	12	265
125	50	.0125.050.0	440652	435	12	290
125	100	.0125.100.0	440653	555	13	290
125	153	.0125.153.0	440654	675	14	290
125	200	.0125.200.0	440655	785	15	290

Balgmittenabstand	Schwe	eißende		Federrate		
	Außen- durchmesser					
l*	d	S	C _r	C _{λ.}	C _p	
mm	mm	mm	N/bar	N/mm	N/mm bar	
136	60,3	2,9	4,2	13	0	
246	60,3	2,9	3,2	4,1	0	
356	60,3	2,9	2,6	2	0	
495	60,3	2,9	2,1	1	0	
141	76,1	2,9	6,2	16	0	
251	76,1	2,9	4,7	5,2	0	
351	76,1	2,9	3,9	2,7	0	
501	76,1	2,9	3,1	1,3	0	
161	88,9	3,2	7,4	29	0	
281	88,9	3,2	5,6	9,7	0	
401	88,9	3,2	4,6	4,8	0	
521	88,9	3,2	3,8	2,9	0	
159	114,3	3,6	11	27	0	
289	114,3	3,6	8,5	8,3	0	
419	114,3	3,6	6,8	4	0	
599	114,3	3,6	5,3	1,9	0	
167	139,7	4	14	50	0	
287	139,7	4	11	16	0	
407	139,7	4	9	7,9	0	
517	139.7	4	7.7	4.8	0	

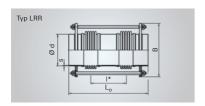
TYP LRR 10 ... PN 10


06

LATERAL-KOMPENSATOR MIT SCHWEISSENDEN, ALLSEITIG BEWEGLICH

Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LRR 10	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2λ _N	-	-	L,	G	В
-	mm	-	-	mm	kg	mm
150	51	.0150.051.0	440656	475	17	320
150	102	.0150.102.0	440657	605	19	320
150	151	.0150.151.0	440658	725	20	320
150	202	.0150.202.0	440659	845	22	320
200	52	.0200.052.0	440660	530	29	405
200	100	.0200.100.0	440661	680	32	405
200	153	.0200.153.0	440662	840	35	405
200	206	.0200.206.0	440663	1015	52	405
250	52	.0250.052.0	440664	565	47	495
250	101	.0250.101.0	440665	725	51	495
250	152	.0250.152.0	440666	885	55	495
250	198	.0250.198.0	440667	1055	80	495
300	51	.0300.051.0	440668	590	73	575
300	102	.0300.102.0	440669	750	79	575
300	145	.0300.145.0	440670	905	102	575
300	196	.0300.196.0	440671	1055	114	575
300	292	.0300.292.0	440672	1355	139	575
350	50	.0350.050.0	440673	650	71	610
350	100	.0350.100.0	440674	820	78	610
350	149	.0350.149.0	440675	1005	99	610
350	195	.0350.195.0	440676	1155	109	610
350	296	.0350.296.0	440677	1505	134	610

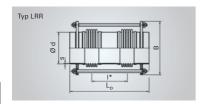
Balgmittenabstand	Schwe	ißende		Federrate	
	Außen- durchmesser	Wanddicke			
l*	d	s	C _r	C _λ .	C _p
mm	mm	mm	N/bar	N/mm	N/mm bar
177	168,3	4	23	74	0
307	168,3	4	18	24	0
427	168,3	4	15	12	0
547	168,3	4	13	7,3	0
219	219,1	4,5	47	92	0
369	219,1	4,5	36	31	0
529	219,1	4,5	29	15	0
668	219,1	4,5	24	8	0
227	273	5	97	112	0
387	273	5	75	37	0
547	273	5	61	18	0
676	273	5	51	10	0
223	323,9	5,6	162	202	0
383	323,9	5,6	127	65	0
488	323,9	5,6	104	32	0
638	323,9	5,6	90	19	0
938	323,9	5,6	70	9,2	0
237	355,6	8	193	242	0
407	355,6	8	147	78	0
542	355,6	8	119	36	0
692	355,6	8	102	23	0
1042	355,6	8	78	10	0


TYP LRR 10 ... PN 10

Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LRR 10	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2λ _N	-	-	L _o	G	В
-	mm	-	-	mm	kg	mm
400	51	.0400.051.0	440678	715	114	700
400	106	.0400.106.0	440679	960	136	700
400	146	.0400.146.0	440680	1110	149	700
400	200	.0400.200.0	440681	1310	166	700
400	287	.0400.287.0	440682	1660	196	700
450	51	.0450.051.0	440683	715	141	690
450	98	.0450.098.0	440684	920	171	690
450	153	.0450.153.0	440685	1120	196	690
450	195	.0450.195.0	440686	1270	215	690
450	285	.0450.285.0	440687	1620	259	690
500	51	.0500.051.0	440688	720	158	740
500	105	.0500.105.0	440689	945	193	740
500	148	.0500.148.0	440690	1095	213	740
500	207	.0500.207.0	440691	1295	240	740
500	306	.0500.306.0	440692	1695	295	740

Balgmittenabstand	Schwe	ißende		Federrate		
_	Außen- durchmesser	Wanddicke	-			
l*	d	s	C _r	C _{λ.}	C _p	
mm	mm	mm	N/bar	N/mm	N/mm bar	
275	406,4	8,8	250	398	0	
470	406,4	8,8	185	108	0	
620	406,4	8,8	157	64	0	
820	406,4	8,8	133	38	0	
1170	406,4	8,8	105	19	0	
270	457	8	279	500	0	
425	457	8	214	159	0	
625	457	8	174	77	0	
775	457	8	151	51	0	
1125	457	8	118	25	0	
264	508	10	334	581	0	
435	508	10	247	163	0	
585	508	10	214	94	0	
785	508	10	180	54	0	
1185	508	10	137	24	0	

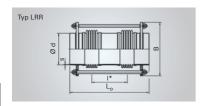
TYP LRR 16 ... PN 16


Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LRR 16	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2λ _N	-	-	L _o	G	В
-	mm	-	-	mm	kg	mm
50	50	.0050.050.0	440693	380	5	205
50	103	.0050.103.0	440694	510	6	205
50	149	.0050.149.0	440695	630	7	205
50	199	.0050.199.0	440696	780	9	205
65	53	.0065.053.0	440697	410	8	225
65	104	.0065.104.0	440698	530	8	225
65	145	.0065.145.0	440699	640	9	225
65	198	.0065.198.0	440700	800	10	225
80	51	.0080.051.0	440701	420	9	240
80	102	.0080.102.0	440702	550	10	240
80	150	.0080.150.0	440703	670	11	240
80	205	.0080.205.0	440704	840	12	240
100	50	.0100.050.0	440705	425	10	265
100	103	.0100.103.0	440706	575	12	265
100	145	.0100.145.0	440707	705	13	265
100	202	.0100.202.0	440708	905	18	265
125	53	.0125.053.0	440709	485	17	290
125	102	.0125.102.0	440710	615	19	290
125	151	.0125.151.0	440711	735	21	290
125	196	.0125.196.0	440712	855	23	290

Balgmittenabstand	Schwei	ißende	Federrate			
_	Außen- durchmesser	Wanddicke				
l*	d	S	C _r	C _λ .	C _p	
mm	mm	mm	N/bar	N/mm	N/mm bar	
151	60,3	2,9	4	20	0	
281	60,3	2,9	3	5,8	0	
401	60,3	2,9	2,4	2,9	0	
550	60,3	2,9	1,9	1,5	0	
156	76,1	2,9	5,8	24	0	
276	76,1	2,9	4,4	7,7	0	
386	76,1	2,9	3,6	4	0	
546	76,1	2,9	2,9	2	0	
161	88,9	3,2	7,3	34	0	
291	88,9	3,2	5,5	11	0	
411	88,9	3,2	4,5	5,5	0	
581	88,9	3,2	3,5	2,8	0	
173	114,3	3,6	11	40	0	
323	114,3	3,6	7,9	12	0	
453	114,3	3,6	6,4	6	0	
653	114,3	3,6	5	2,9	0	
187	139,7	4	16	67	0	
317	139,7	4	12	23	0	
437	139,7	4	10	12	0	
557	139,7	4	8,8	7,1	0	

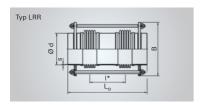
06

LATERAL-KOMPENSATOR MIT SCHWEISSENDEN, ALLSEITIG BEWEGLICH


TYP LRR 16 ... PN 16

Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LRR 16	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2λ _N	-	-	L,	G	В
_	mm	-	-	mm	kg	mm
150	53	.0150.053.0	440713	515	24	350
150	100	.0150.100.0	440714	645	26	350
150	153	.0150.153.0	440715	785	29	350
150	194	.0150.194.0	440716	915	35	350
200	50	.0200.050.0	440717	545	40	435
200	100	.0200.100.0	440718	705	44	435
200	150	.0200.150.0	440719	855	48	435
200	200	.0200.200.0	440720	1045	65	435
250	52	.0250.052.0	440721	640	65	520
250	103	.0250.103.0	440722	860	83	520
250	154	.0250.154.0	440723	1060	96	520
250	207	.0250.207.0	440724	1310	112	520
300	50	.0300.050.0	440725	710	107	610
300	95	.0300.095.0	440726	880	122	610
300	145	.0300.145.0	440727	1080	140	610
300	196	.0300.196.0	440728	1330	162	610
300	296	.0300.296.0	440729	1830	206	610
350	51	.0350.051.0	440730	740	116	580
350	100	.0350.100.0	440731	940	137	580
350	149	.0350.149.0	440732	1140	158	580
350	199	.0350.199.0	440733	1390	184	580
350	306	.0350.306.0	440734	1940	242	580

Balgmittenabstand	Schwe	ißende		Federrate			
-	Außen- durchmesser	Wanddicke					
l*	d	s	C _r	C _λ	C _p		
mm	mm	mm	N/bar	N/mm	N/mm bar		
197	168,3	4	29	85	0		
327	168,3	4	23	30	0		
467	168,3	4	19	14	0		
597	168,3	4	16	8,7	0		
213	219,1	4,5	65	137	0		
373	219,1	4,5	50	42	0		
523	219,1	4,5	41	21	0		
672	219,1	4,5	34	11	0		
266	273	5	106	216	0		
445	273	5	79	62	0		
645	273	5	64	31	0		
895	273	5	52	16	0		
235	323,9	5,6	156	236	0		
405	323,9	5,6	127	89	0		
605	323,9	5,6	103	42	0		
855	323,9	5,6	83	22	0		
1355	323,9	5,6	60	8,8	0		
260	355,6	8	166	280	0		
460	355,6	8	129	99	0		
660	355,6	8	105	50	0		
910	355,6	8	84	27	0		
1460	355,6	8	60	11	0		


TYP LRR 16 ... PN 16

Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LRR 16	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2λ _N	-	-	L _o	G	В
-	mm	-	-	mm	kg	mm
400	52	.0400.052.0	440735	760	141	630
400	94	.0400.094.0	440736	930	160	630
400	147	.0400.147.0	440737	1130	183	630
400	200	.0400.200.0	440738	1330	207	630
400	309	.0400.309.0	440739	1830	264	630
450	50	.0450.050.0	440740	800	198	720
450	104	.0450.104.0	440741	1020	228	720
450	155	.0450.155.0	440742	1220	255	720
450	203	.0450.203.0	440743	1420	283	720
450	296	.0450.296.0	440744	1870	346	720

Balgmittenabstand	Schwe	ißende		Federrate				
_	Außen- durchmesser Wanddicke		-					
I *	d	s	C _r	C _λ	C _p			
mm	mm	mm	N/bar	N/mm	N/mm bar			
260	406,4	8,8	211	407	0			
430	406,4	8,8	168	166	0			
630	406,4	8,8	137	81	0			
830	406,4	8,8	115	48	0			
1330	406,4	8,8	83	19	0			
260	457	8	290	516	0			
480	457	8	224	171	0			
680	457	8	185	89	0			
880	457	8	158	54	0			
1330	457	8	118	24	0			

TYP LRR 25 ... PN 25

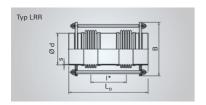
Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LRR 25	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2λ _N	-	-	L,	G	В
_	mm	-	-	mm	kg	mm
50	50	.0050.050.0	440745	410	7	205
50	98	.0050.098.0	440746	540	8	205
50	148	.0050.148.0	440747	710	10	205
50	205	.0050.205.0	440748	910	12	205
65	51	.0065.051.0	440749	430	8	225
65	99	.0065.099.0	440750	580	9	225
65	153	.0065.153.0	440751	780	11	225
65	195	.0065.195.0	440752	940	14	225
80	52	.0080.052.0	440753	440	11	240
80	103	.0080.103.0	440754	580	13	240
80	155	.0080.155.0	440755	750	15	240
80	193	.0080.193.0	440756	890	17	240
100	50	.0100.050.0	440757	475	14	265
100	101	.0100.101.0	440758	645	18	265
100	145	.0100.145.0	440759	805	20	265
100	192	.0100.192.0	440760	990	24	265
125	51	.0125.051.0	440761	515	22	320
125	102	.0125.102.0	440762	675	24	320
125	153	.0125.153.0	440763	865	27	320
125	196	.0125.196.0	440764	1050	33	320

Balgmittenabstand	Schweißende			Federrate			
	Außen- durchmesser						
l*	d	s	S C _r		C _p		
mm	mm	mm	N/bar	N/mm	N/mm bar		
156	60,3	2,9	3,9	23	0		
286	60,3	2,9	2,9	7	0		
455	60,3	2,9	2,2	2,8	0		
655	60,3	2,9	1,7	1,4	0		
185	76,1	2,9	5,5	26	0		
335	76,1	2,9	4,1	8	0		
535	76,1	2,9	3	3,1	0		
695	76,1	2,9	2,5	1,9	0		
176	88,9	3,2	6,9	39	0		
316	88,9	3,2	5,2	13	0		
486	88,9	3,2	4	5,4	0		
626	88,9	3,2	3,4	3,3	0		
197	114,3	3,6	12	54	0		
367	114,3	3,6	9	16	0		
527	114,3	3,6	7,1	7,8	0		
712	114,3	3,6	5,8	4,3	0		
211	139,7	4	20	67	0		
371	139,7	4	15	21	0		
561	139,7	4	12	8,8	0		
714	139.7	4	9.7	4.9	0		

TYP LRR 25 ... PN 25

06

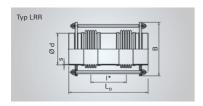
LATERAL-KOMPENSATOR MIT SCHWEISSENDEN, ALLSEITIG BEWEGLICH


Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LRR 25	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2 λ _N	-	-	L _o	G	В
-	mm	-	-	mm	kg	mm
150	51	.0150.051.0	440765	545	30	380
150	102	.0150.102.0	440766	715	34	380
150	151	.0150.151.0	440767	915	39	380
150	194	.0150.194.0	440768	1120	49	380
200	50	.0200.050.0	440769	670	64	460
200	101	.0200.101.0	440770	870	76	460
200	155	.0200.155.0	440771	1140	90	460
200	195	.0200.195.0	440772	1340	100	460
250	51	.0250.051.0	440773	650	92	495
250	101	.0250.101.0	440774	910	112	495
250	149	.0250.149.0	440775	1160	133	495
250	204	.0250.204.0	440776	1460	158	495
300	61	.0300.061.0	440777	825	144	545
300	110	.0300.110.0	440778	1050	166	545
300	150	.0300.150.0	440779	1250	186	545
300	200	.0300.200.0	440780	1550	216	545
300	302	.0300.302.0	440781	2150	274	545
350	50	.0350.050.0	440782	790	154	615
350	100	.0350.100.0	440783	1000	178	615
350	145	.0350.145.0	440784	1200	201	615
350	190	.0350.190.0	440785	1450	231	615
350	291	.0350.291.0	440786	2000	295	615

Balgmittenabstand	Schwe	ißende		Federrate	
	Außen- durchmesser	Wanddicke			
l*	d	s	C _r	C _λ .	C _p
mm	mm	mm	N/bar	N/mm	N/mm bar
221	168,3	4	39	85	0
391	168,3	4	30	26	0
591	168,3	4	23	11	0
764	168,3	4	19	6,1	0
261	219,1	4,5	70	190	0
461	219,1	4,5	53	59	0
690	219,1	4,5	40	23	0
890	219,1	4,5	34	14	0
271	273	5	106	250	0
450	273	5	79	74	0
700	273	5	61	32	0
1000	273	5	48	16	0
340	323,9	5,6	118	213	0
565	323,9	5,6	93	83	0
765	323,9	5,6	78	46	0
1065	323,9	5,6	62	24	0
1665	323,9	5,6	45	10	0
260	355,6	8	179	363	0
470	355,6	8	141	125	0
670	355,6	8	116	64	0
920	355,6	8	94	35	0
1470	355,6	8	68	14	0

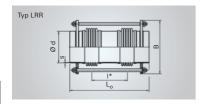
TYP LRR 40 ...

PN 40


LATERAL-KOMPENSATOR MIT SCHWEISSENDEN, ALLSEITIG BEWEGLICH

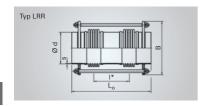
Nennweite	Laterale Bewegung- saufnahme nominal	Typ LRR 40	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2λ _N	-	-	L _o	G	В
-	mm	-	-	mm	kg	mm
50	53	.0050.053.0	440787	440	7	205
50	100	.0050.100.0	440788	640	9	205
50	146	.0050.146.0	440789	840	11	205
50	204	.0050.204.0	440790	1090	13	205
65	49	.0065.049.0	440791	465	11	225
65	100	.0065.100.0	440792	665	14	225
65	156	.0065.156.0	440793	915	17	225
65	200	.0065.200.0	440794	1115	20	225
80	51	.0080.051.0	440795	475	13	240
80	101	.0080.101.0	440796	675	15	240
80	156	.0080.156.0	440797	925	18	240
80	188	.0080.188.0	440798	1075	22	240
100	46	.0100.046.0	440799	590	25	325
100	96	.0100.096.0	440800	830	32	325
100	146	.0100.146.0	440801	1130	39	325
100	197	.0100.197.0	440802	1430	46	325
125	46	.0125.046.0	440803	600	31	350
125	94	.0125.094.0	440804	850	37	350
125	152	.0125.152.0	440805	1200	46	350
125	193	.0125.193.0	440806	1450	53	350

Balgmittenabstand	Schwe	eißende	Federrate			
	Außen- durchmesser	Wanddicke	-			
l*	d	s	C _r	C _{λ.}	C _p	
mm	mm	mm	N/bar	N/mm	N/mm bar	
194	60,3	2,9	3,5	19	0	
394	60,3	2,9	2,4	4,7	0	
594	60,3	2,9	1,8	2,1	0	
844	60,3	2,9	1,4	1	0	
198	76,1	2,9	6,2	33	0	
398	76,1	2,9	4,3	8,4	0	
648	76,1	2,9	3,1	3,2	0	
848	76,1	2,9	2,6	1,8	0	
202	88,9	3,2	8	38	0	
402	88,9	3,2	5,6	9,8	0	
652	88,9	3,2	4,1	3,7	0	
802	88,9	3,2	3,5	2,5	0	
265	114,3	3,6	19	63	0	
465	114,3	3,6	13	20	0	
765	114,3	3,6	9,6	7,8	0	
1065	114,3	3,6	7,6	4,1	0	
230	139,7	4	25	78	0	
480	139,7	4	17	20	0	
830	139,7	4	12	6,8	0	
1080	139.7	4	10	4.1	0	


TYP LRR 40 ... PN 40

Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LRR 40	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2λ _N	-	-	L _o	G	В
-	mm	-	-	mm	kg	mm
150	55	.0150.055.0	440807	730	51	405
150	96	.0150.096.0	440808	980	60	405
150	149	.0150.149.0	440809	1330	73	405
150	195	.0150.195.0	440810	1630	83	405
200	54	.0200.054.0	440811	760	99	440
200	97	.0200.097.0	440812	960	113	440
200	149	.0200.149.0	440813	1260	133	440
200	206	.0200.206.0	440814	1610	156	440
250	45	.0250.045.0	440815	720	136	530
250	97	.0250.097.0	440816	970	159	530
250	151	.0250.151.0	440817	1320	193	530
250	206	.0250.206.0	440818	1670	225	530

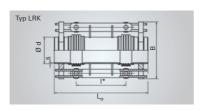
Balgmittenabstand	Schwe	ißende		Federrate			
_	Außen- durchmesser	Wanddicke	_				
I *	d	s	C _r	C _λ	C _p		
mm	mm	mm	N/bar	N/mm	N/mm bar		
314	168,3	4	38	74	0		
564	168,3	4	28	24	0		
914	168,3	4	21	9,4	0		
1214	168,3	4	17	5,4	0		
300	219,1	4,5	60	161	0		
500	219,1	4,5	48	62	0		
800	219,1	4,5	36	25	0		
1150	219,1	4,5	28	12	0		
255	273	6,3	110	288	0		
505	273	6,3	83	82	0		
855	273	6,3	60	30	0		
1205	273	6,3	48	15	0		


TYP LRR 63 ... PN 63

Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LRR 63	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2λ _N	-	-	L _o	G	В
-	mm	-	-	mm	kg	mm
50	50	.0050.050.0	440819	555	10	205
50	96	.0050.096.0	440820	790	13	205
50	155	.0050.155.0	440821	1140	17	205
50	198	.0050.198.0	440822	1390	20	205
65	55	.0065.055.0	440823	570	16	255
65	96	.0065.096.0	440824	820	20	255
65	145	.0065.145.0	440825	1120	25	255
65	203	.0065.203.0	440826	1470	30	255
80	50	.0080.050.0	440827	590	25	300
80	98	.0080.098.0	440828	890	31	300
80	152	.0080.152.0	440829	1240	38	300
80	198	.0080.198.0	440830	1540	44	300
100	50	.0100.050.0	440831	700	43	350
100	98	.0100.098.0	440832	1000	52	350
100	155	.0100.155.0	440833	1400	65	350
100	197	.0100.197.0	440834	1700	74	350
125	55	.0125.055.0	440835	740	60	410
125	99	.0125.099.0	440836	1040	73	410
125	143	.0125.143.0	440837	1340	87	410
125	201	.0125.201.0	440838	1740	104	410

Balgmittenabstand	Schwe	ißende	Federrate			
_	Außen- durchmesser	Wanddicke				
l*	d	s	C _r	C _{),}	C _p	
mm	mm	mm	N/bar	N/mm	N/mm bar	
260	60,3	2,9	3,6	28	0	
510	60,3	2,9	2,5	7,3	0	
860	60,3	2,9	1,7	2,6	0	
1110	60,3	2,9	1,4	1,5	0	
265	76,1	3,2	6,9	35	0	
515	76,1	3,2	4,8	9,3	0	
815	76,1	3,2	3,5	3,7	0	
1165	76,1	3,2	2,6	1,8	0	
265	88,9	4	12	44	0	
565	88,9	4	8,1	9,8	0	
915	88,9	4	5,8	3,8	0	
1165	88,9	4	4,8	2,3	0	
290	114,3	4,5	20	68	0	
590	114,3	4,5	14	17	0	
990	114,3	4,5	10	6	0	
1290	114,3	4,5	8,2	3,6	0	
318	139,7	6,3	30	67	0	
618	139,7	6,3	21	19	0	
918	139,7	6,3	17	8,7	0	
1318	139,7	6,3	13	4,2	0	

TYP LRR 63 ... PN 63


Nennweite	Laterale Bewegungs- aufnahme nominal	Typ LRR 63	Bestellnummer Standard- ausführung	Baulänge	Gewicht ca.	Größte Breite ca.
DN	2λ _N	-	-	L _o	G	В
-	mm	-	-	mm	kg	mm
150	50	.0150.050.0	440839	750	83	385
150	98	.0150.098.0	440840	1050	101	385
150	153	.0150.153.0	440841	1450	124	385
150	195	.0150.195.0	440842	1750	142	385
200	53	.0200.053.0	440843	910	147	475
200	95	.0200.095.0	440844	1210	174	475
200	142	.0200.142.0	440845	1610	209	475
200	199	.0200.199.0	440846	2110	253	475

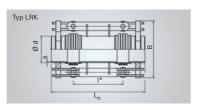
Balgmittenabstand	Schwe	ißende		Federrate			
	Außen- durchmesser	Wanddicke	-				
l*	d	s	C _r	C _λ .	C _p		
mm	mm	mm	N/bar	N/mm	N/mm bar		
295	168,3	5,6	38	116	0		
595	168,3	5,6	27	31	0		
995	168,3	5,6	19	11	0		
1295	168,3	5,6	16	6,9	0		
405	219,1	8	59	188	0		
705	219,1	8	44	65	0		
1105	219,1	8	33	27	0		
1605	210 1	Ω	25	12	n		

LATERAL-KOMPENSATOR MIT SCHWEISSENDEN

EINSEITIG BEWEGLICH TYP LRN 06 ... ALLSEITIG BEWEGLICH TYP LRK 06 ...

Typ LRN

PN 06

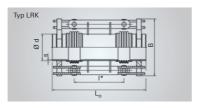

Nenn- weite	Laterale Bewegungs- aufnahme	Typ		nummer usführung	LF	RN	LI	RK	Größte Breite ca.
	nominal	LRK 06	LRN	LRK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.	ca.
DN	2 λ _N	-	-	-	L _o	G	L,	G	В
-	mm	-	-	-	mm	kg	mm	kg	mm
600	58	.0600.058.0	440395	440221	795	206	795	235	900
600	108	.0600.108.0	440396	440222	905	222	905	252	900
600	150	.0600.150.0	440397	440223	1055	243	1055	273	900
600	205	.0600.205.0	440398	440224	1255	272	1255	301	900
600	302	.0600.302.0	440399	440225	1605	322	1605	351	900
700	53	.0700.053.0	440400	440226	835	285	835	314	1010
700	98	.0700.098.0	440401	440227	945	303	945	332	1010
700	152	.0700.152.0	440402	440228	1100	332	1100	362	1010
700	211	.0700.211.0	440403	440229	1300	371	1300	401	1010
700	299	.0700.299.0	440404	440230	1600	429	1600	459	1010
800	51	.0800.051.0	440405	440231	915	346	915	376	1120
800	98	.0800.098.0	440406	440232	1045	376	1045	407	1120
800	151	.0800.151.0	440407	440233	1210	414	1210	442	1120
800	206	.0800.206.0	440408	440234	1410	457	1410	485	1120
800	303	.0800.303.0	440409	440235	1760	532	1760	560	1120
900	52	.0900.052.0	440410	440236	1015	539	1015	590	1285
900	97	.0900.097.0	440411	440237	1145	577	1145	630	1285
900	150	.0900.150.0	440412	440238	1395	645	1395	698	1285
900	197	.0900.197.0	440413	440239	1510	679	1510	731	1285
900	295	.0900.295.0	440414	440240	1910	786	1910	838	1285

Balgmittenabstand	Schwe	eißende	Federrate				
-	Außen- durchmesser	Wanddicke					
l*	d	S	C _r	C _{\(\lambda\)}	C _p		
mm	mm	mm	N/bar	N/mm	N/mm bar		
363	610	8	427	430	6,9		
418	610	8	369	193	8,6		
568	610	8	272	105	4,7		
768	610	8	201	57	2,5		
1118	610	8	138	27	1,2		
363	711	8	573	612	9,2		
418	711	8	497	276	12		
545	711	8	380	135	8,1		
745	711	8	278	72	4,4		
1045	711	8	198	37	2,2		
383	813	10	708	1050	13		
448	813	10	604	458	15		
580	813	10	465	227	11		
780	813	10	346	125	6,1		
1130	813	10	239	60	2,9		
433	914	10	997	1165	13		
498	914	10	865	525	16		
748	914	10	575	232	7,1		
830	914	10	518	157	6,9		
1230	914	10	349	71	3,1		

06

LATERAL-KOMPENSATOR MIT SCHWEISSENDEN EINSEITIG BEWEGLICH TYP LRN 06 ... ALLSEITIG BEWEGLICH TYP LRK 06 ...

Typ LRN



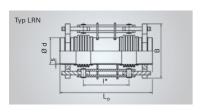
P	Ν	O	6

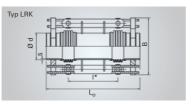
Nenn- weite	Laterale Bewegungs- aufnahme	Тур LRN 06		nummer usführung	LRN		LRK		Größte Breite
	nominal	LRK 06	LRN	LRK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.	ca.
DN	2λ _N	-	-	-	L _o	G	L,	G	В
-	mm	-	-	-	mm	kg	mm	kg	mm
1000	50	.1000.050.0	440415	440241	1035	595	1035	647	1395
1000	104	.1000.104.0	440416	440242	1220	652	1220	705	1395
1000	152	.1000.152.0	440417	440243	1390	704	1390	756	1395
1000	210	.1000.210.0	440418	440244	1640	778	1640	831	1395
1000	303	.1000.303.0	440419	440245	2040	895	2040	947	1395
1200	63	.1200.063.0	440420	440246	1155	820	1155	872	1615
1200	100	.1200.100.0	440421	440247	1320	885	1320	937	1615
1200	155	.1200.155.0	440422	440248	1540	968	1540	1020	1615
1200	206	.1200.206.0	440423	440249	1790	1068	1790	1121	1615
1200	308	.1200.308.0	440424	440250	2290	1266	2290	1318	1615
1400	49	.1400.049.0	440425	440251	1340	1161	1340	1281	1840
1400	97	.1400.097.0	440426	440252	1480	1190	1480	1311	1840
1400	149	.1400.149.0	440427	440253	1880	1386	1880	1507	1840
1400	202	.1400.202.0	440428	440254	2280	1586	2280	1706	1840
1400	307	.1400.307.0	440429	440255	3080	1981	3080	2102	1840
1600	47	.1600.047.0	440430	440256	1540	1723	1540	1926	2080
1600	103	.1600.103.0	440431	440257	1780	1817	1780	2019	2080
1600	147	.1600.147.0	440432	440258	2180	2062	2180	2264	2080
1600	190	.1600.190.0	440433	440259	2580	2307	2580	2510	2080
1600	300	.1600.300.0	440434	440260	3580	2915	3580	3117	2080

Balgmittenabstand	Schwe	ißende		Federrate			
	Außen- durchmesser	Wanddicke					
I*	d	s	C _r	C _λ	C _p		
mm	mm	mm	N/bar	N/mm	N/mm bar		
443	1016	10	1196	1396	16		
560	1016	10	940	517	16		
695	1016	10	758	280	13		
945	1016	10	558	152	6,9		
1345	1016	10	392	75	3,4		
478	1220	10	1556	1415	25		
610	1220	10	1212	687	19		
795	1220	10	930	337	14		
1045	1220	10	708	195	7,9		
1545	1220	10	479	89	3,6		
720	1420	15	1848	1848	13		
740	1420	15	1797	873	24		
1140	1420	15	1167	368	10		
1540	1420	15	864	202	5,6		
2340	1420	15	569	88	2,4		
820	1620	15	2625	2089	13		
940	1620	15	2288	794	20		
1340	1620	15	1606	391	9,6		
1740	1620	15	1237	232	5,7		
2740	1620	15	786	94	2,3		

358 *WITZENMANN* 1501de/19/10/23/pdf **HYDRA** 1501de/19/10/23/pdf *WITZENMANN* **359**

P	N	0	6
P	N	U	6

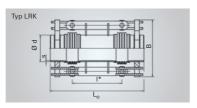

Nenn- weite	Laterale Typ Bewegungs- aufnahme LRN 06		Bestellnummer Standardausführung		LRN		LRK		Größte Breite ca.
	nominal	LRK 06	LRN	LRK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.	ou.
DN	2λ _N	-	-	-	L _o	G	L.	G	В
-	mm	-	-	-	mm	kg	mm	kg	mm
1800	63	.1800.063.0	440435	440261	1480	1789	1480	2106	2280
1800	102	.1800.102.0	440436	440262	1880	2055	1880	2372	2280
1800	150	.1800.150.0	440437	440263	2380	2385	2380	2702	2280
1800	199	.1800.199.0	440438	440264	2880	2718	2880	3036	2280
1800	307	.1800.307.0	440439	440265	3980	3445	3980	3762	2280
2000	57	.2000.057.0	440440	-	1580	2681	-	-	2575
2000	101	.2000.101.0	440441	-	2080	3104	=	-	2575
2000	146	.2000.146.0	440442	-	2580	3526	-	-	2575
2000	199	.2000.199.0	440443	-	3180	4034	-	-	2575
2000	306	.2000.306.0	440444	-	4380	5045	-	-	2575


Balgmittenabstand	Schwe	ißende			
	Außen- durchmesser	Wanddicke	-		
l*	d	S	C _r	C _λ	C _p
mm	mm	mm	N/bar	N/mm	N/mm bar
640	1820	15	4219	2400	53
1040	1820	15	2598	910	20
1540	1820	15	1755	415	9,2
2040	1820	15	1325	237	5,2
3140	1820	15	861	100	2,2
640	2020	15	6472	3254	65
1140	2020	15	3637	1027	20
1640	2020	15	2529	497	9,9
2240	2020	15	1852	266	5,3
3440	2020	15	1206	113	2,3

LATERAL-KOMPENSATOR MIT SCHWEISSENDEN

EINSEITIG BEWEGLICH TYP LRN 10 ... ALLSEITIG BEWEGLICH TYP LRK 10 ...

PN 10



Nenn- weite	Laterale Bewegungs- aufnahme	Typ	Standardausführung		LF	RN	LF	RK	Größte Breite
	nominal	LRK 10	LRN	LRK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.	ca.
DN	2λ _N	-	-	-	L _o	G	L,	G	В
_	mm	-	-	-	mm	kg	mm	kg	mm
600	55	.0600.055.0	440445	440266	840	264	840	295	900
600	103	.0600.103.0	440446	440267	955	287	955	317	900
600	155	.0600.155.0	440447	440268	1155	322	1155	351	900
600	207	.0600.207.0	440448	440269	1355	356	1355	386	900
600	298	.0600.298.0	440449	440270	1705	417	1705	446	900
700	52	.0700.052.0	440450	440271	900	421	900	472	1065
700	111	.0700.111.0	440451	440272	1075	470	1075	521	1065
700	152	.0700.152.0	440452	440273	1190	501	1190	553	1065
700	208	.0700.208.0	440453	440274	1390	547	1390	600	1065
700	307	.0700.307.0	440454	440275	1740	627	1740	679	1065
800	51	.0800.051.0	440455	440276	970	508	970	559	1165
800	98	.0800.098.0	440456	440277	1105	552	1105	603	1165
800	150	.0800.150.0	440457	440278	1270	604	1270	655	1165
800	204	.0800.204.0	440458	440279	1470	662	1470	713	1165
800	299	.0800.299.0	440459	440280	1820	766	1820	817	1165
900	52	.0900.052.0	440460	440281	1070	655	1070	707	1315
900	97	.0900.097.0	440461	440282	1205	704	1205	756	1315
900	146	.0900.146.0	440462	440283	1370	760	1370	813	1315
900	194	.0900.194.0	440463	440284	1570	824	1570	876	1315
900	291	.0900.291.0	440464	440285	1970	953	1970	1005	1315

Balgmittenabstand	Schwe	ißende		Federrate				
_	Außen- durchmesser	Wanddicke	-					
I *	d	s	C _r	C _λ	C _p			
mm	mm	mm	N/bar	N/mm	N/mm bar			
365	610	10	424	662	7			
423	610	10	366	296	8,7			
623	610	10	248	136	4			
823	610	10	188	78	2,3			
1173	610	10	132	38	1,1			
375	711	12	698	1123	10			
488	711	12	535	396	9,7			
570	711	12	458	242	8,6			
770	711	12	339	133	4,7			
1120	711	12	233	63	2,2			
385	813	12	880	1384	13			
453	813	12	748	600	16			
585	813	12	577	297	11			
785	813	12	430	165	6,2			
1135	813	12	298	79	3			
435	914	12	992	1538	13			
503	914	12	858	690	16			
635	914	12	677	358	12			
835	914	12	515	207	7			
1235	914	12	348	95	3,2			

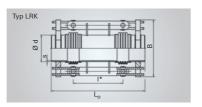
06

P	N	1	N
	ıw		w

Nenn- weite	Laterale Bewegungs- aufnahme	Typ LRN 10		nummer usführung	LRN LRK		RK	Größte Breite ca.	
	nominal	LRK 10	LRN	LRK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.	ou.
DN	2λ _N	-	-	-	L _o	G	L _o	G	В
_	mm	-	-	-	mm	kg	mm	kg	mm
1000	58	.1000.058.0	440465	440286	1260	978	1260	1099	1450
1000	102	.1000.102.0	440466	440287	1480	1072	1480	1193	1450
1000	155	.1000.155.0	440467	440288	1705	1165	1705	1282	1450
1000	212	.1000.212.0	440468	440289	2005	1281	2005	1398	1450
1000	298	.1000.298.0	440469	440290	2455	1456	2455	1573	1450
1200	51	.1200.051.0	440470	440291	1260	1292	1260	1499	1680
1200	102	.1200.102.0	440471	440292	1505	1429	1505	1633	1680
1200	151	.1200.151.0	440472	440293	1805	1582	1805	1785	1680
1200	201	.1200.201.0	440473	440294	2105	1734	2105	1937	1680
1200	300	.1200.300.0	440474	440295	2705	2038	2705	2242	1680
1400	54	.1400.054.0	440475	-	1660	2226	-	-	1975
1400	106	.1400.106.0	440476	-	1815	2296	-	-	1975
1400	155	.1400.155.0	440477	-	2215	2572	-	-	1975
1400	204	.1400.204.0	440478	-	2615	2847	-	-	1975
1400	303	.1400.303.0	440479	-	3415	3402	-	-	1975

Balgmittenabstand	Schwe	ißende	Federrate					
-	Außen- durchmesser	Wanddicke						
I *	d	s	C _r	C _{\(\lambda\)}	C _p			
mm	mm	mm	N/bar	N/mm	N/mm bar			
480	1016	15	1478	1857	18			
665	1016	15	1065	772	12			
853	1016	15	833	393	8,8			
1153	1016	15	616	215	4,8			
1603	1016	15	443	111	2,5			
480	1220	15	2587	3030	26			
653	1220	15	1905	1095	21			
953	1220	15	1305	513	9,9			
1253	1220	15	992	297	5,7			
1853	1220	15	671	136	2,6			
830	1420	15	2516	2287	10			
858	1420	15	2431	1068	19			
1258	1420	15	1658	497	9,1			
1658	1420	15	1258	286	5,2			
2458	1420	15	848	130	2,4			

Typ LRN


800

307

.0800.307.0 440499 440315

LATERAL-KOMPENSATOR MIT SCHWEISSENDEN

EINSEITIG BEWEGLICH TYP LRN 16 ... ALLSEITIG BEWEGLICH TYP LRK 16 ...

PN 16

Nenn- weite	Laterale Bewegungs- aufnahme	Typ LRN 16		nummer usführung	LF	RN	LF	RK	Größte Breite ca.
	nominal	LRK 16	LRN	LRK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.	ca.
DN	2λ _N	-	-	-	L _o	G	L,	G	В
_	mm	-	-	-	mm	kg	mm	kg	mm
500	53	.0500.053.0	440480	440296	810	250	810	280	790
500	107	.0500.107.0	440481	440297	945	276	945	306	790
500	148	.0500.148.0	440482	440298	1095	299	1095	328	790
500	203	.0500.203.0	440483	440299	1295	329	1295	359	790
500	313	.0500.313.0	440484	440300	1695	390	1695	419	790
600	53	.0600.053.0	440485	440301	945	393	945	443	945
600	99	.0600.099.0	440486	440302	1115	437	1115	487	945
600	150	.0600.150.0	440487	440303	1365	489	1365	539	945
600	202	.0600.202.0	440488	440304	1615	542	1615	592	945
600	305	.0600.305.0	440489	440305	2115	646	2115	696	945
700	54	.0700.054.0	440490	440306	1005	511	1005	562	1085
700	100	.0700.100.0	440491	440307	1180	564	1180	616	1085
700	151	.0700.151.0	440492	440308	1430	630	1430	682	1085
700	202	.0700.202.0	440493	440309	1680	696	1680	748	1085
700	304	.0700.304.0	440494	440310	2180	829	2180	881	1085
800	58	.0800.058.0	440495	440311	1120	764	1120	885	1220
800	105	.0800.105.0	440496	440312	1300	833	1300	954	1220
800	153	.0800.153.0	440497	440313	1550	918	1550	1039	1220
800	211	.0800.211.0	440498	440314	1850	1018	1850	1139	1220

2350

1188

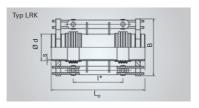
2350

1309

1220

Balgmittenabstand	Schwe	ißende		Federrate				
-	Außen- durchmesser	Wanddicke						
l*	d	S	C _r	C _λ	C _p			
mm	mm	mm	N/bar	N/mm	N/mm bar			
338	508	10	325	714	5,6			
418	508	10	262	279	6,1			
568	508	10	193	151	3,3			
768	508	10	143	83	1,8			
1168	508	10	94	36	0,8			
398	610	12	487	1103	8,2			
508	610	12	382	451	7,5			
758	610	12	256	203	3,4			
1008	610	12	192	115	1,9			
1508	610	12	129	51	0,9			
403	711	12	651	1332	11			
515	711	12	510	543	10			
765	711	12	343	246	4,6			
1015	711	12	258	140	2,6			
1515	711	12	173	63	1,2			
460	813	15	981	1375	11			
575	813	15	786	589	11			
825	813	15	548	286	5,3			
1125	813	15	402	154	2,9			
1625	813	15	278	74	1,4			

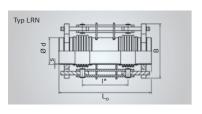
16

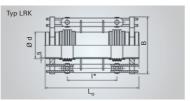

366 *WITZENMANN* 1501de/19/10/23/pdf **HYDRA**) 1501de/19/10/23/pdf *WITZENMANN* **367**

P	N	1	6
	ıw		v

Nenn- weite	Laterale Typ Bewegungs- aufnahme LRN 16		Bestellnummer Standardausführung		LRN		LRK		Größte Breite ca.
	nominal	LRK 16	LRN	LRK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.	ou.
DN	2λ _N	-	-	-	L _o	G	L _o	G	В
-	mm	-	-	-	mm	kg	mm	kg	mm
900	52	.0900.052.0	440500	440316	1270	1155	1270	1362	1380
900	104	.0900.104.0	440501	440317	1455	1249	1455	1454	1380
900	157	.0900.157.0	440502	440318	1670	1349	1670	1556	1380
900	205	.0900.205.0	440503	440319	1920	1458	1920	1664	1380
900	293	.0900.293.0	440504	440320	2370	1651	2370	1857	1380
1000	51	.1000.051.0	440505	440321	1310	1279	1310	1488	1490
1000	102	.1000.102.0	440506	440322	1510	1397	1510	1603	1490
1000	154	.1000.154.0	440507	440323	1735	1510	1735	1716	1490
1000	210	.1000.210.0	440508	440324	2035	1647	2035	1853	1490
1000	303	.1000.303.0	440509	440325	2535	1873	2535	2078	1490

Balgmittenabstand	Schwe	ißende	Federrate				
-	Außen- durchmesser	Wanddicke	-				
l*	d	S	C _r	C _{λ.}	C _p		
mm	mm	mm	N/bar	N/mm	N/mm bar		
535	914	15	1355	1878	8,6		
653	914	15	1110	756	9,6		
835	914	15	866	383	7		
1085	914	15	667	227	4,2		
1535	914	15	471	113	2,1		
555	1016	15	1605	2466	11		
680	1016	15	1308	982	12		
868	1016	15	1024	502	9		
1168	1016	15	761	277	5		
1668	1016	15	533	136	2,4		


PN	25
----	----


Nenn- weite	Laterale Bewegungs- aufnahme	Typ LRN 25	Bestellr Standarda	nummer usführung	LF	RN	LF	RK	Größte Breite ca.
	nominal	LRK 25	LRN	LRK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.	Ga.
DN	2λ _N	-	-	-	L _o	G	L,	G	В
-	mm	-	-	-	mm	kg	mm	kg	mm
400	50	.0400.050.0	440510	440326	860	217	860	247	680
400	100	.0400.100.0	440511	440327	1110	251	1110	281	680
400	153	.0400.153.0	440512	440328	1310	280	1310	310	680
400	203	.0400.203.0	440513	440329	1560	313	1560	343	680
400	295	.0400.295.0	440514	440330	2010	372	2010	401	680
450	51	.0450.051.0	440515	440331	905	331	905	382	785
450	103	.0450.103.0	440516	440332	1110	373	1110	424	785
450	154	.0450.154.0	440517	440333	1360	417	1360	468	785
450	195	.0450.195.0	440518	440334	1560	452	1560	502	785
450	297	.0450.297.0	440519	440335	2060	544	2060	595	785
500	53	.0500.053.0	440520	440336	965	385	965	436	845
500	105	.0500.105.0	440521	440337	1220	439	1220	490	845
500	150	.0500.150.0	440522	440338	1380	476	1380	528	845
500	202	.0500.202.0	440523	440339	1630	523	1630	575	845
500	305	.0500.305.0	440524	440340	2130	616	2130	668	845
600	49	.0600.049.0	440525	440341	1085	624	1085	745	1000
600	98	.0600.098.0	440526	440342	1240	684	1240	805	1000
600	151	.0600.151.0	440527	440343	1455	751	1455	872	1000
600	202	.0600.202.0	440528	440344	1705	823	1705	944	1000
600	303	.0600.303.0	440529	440345	2205	967	2205	1088	1000
700	51	.0700.051.0	440530	440346	1185	931	1185	1137	1150
700	103	.0700.103.0	440531	440347	1420	1030	1420	1235	1150
700	150	.0700.150.0	440532	440348	1670	1121	1670	1326	1150
700	207	.0700.207.0	440533	440349	1970	1234	1970	1439	1150
700	301	.0700.301.0	440534	440350	2470	1425	2470	1630	1150

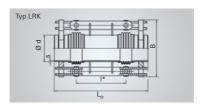
Balgmittenabstand	Schwe	eißende		Federrate	
	Außen- durchmesser	Wanddicke			
l*	d	s	C _r	C _λ	C _p
mm	mm	mm	N/bar	N/mm	N/mm bar
375	406,4	10	189	639	3,5
600	406,4	10	118	199	1,7
775	406,4	10	91	100	1,2
1025	406,4	10	69	57	0,7
1475	406,4	10	48	27	0,3
378	457	10	293	794	4,5
530	457	10	209	269	3,4
780	457	10	142	124	1,6
980	457	10	113	79	1
1480	457	10	75	35	0,4
408	508	12	338	999	5,6
635	508	12	216	325	2,8
765	508	12	179	187	2,3
1015	508	12	135	106	1,3
1515	508	12	91	48	0,6
483	610	15	541	1238	4,5
595	610	15	437	486	4,9
778	610	15	335	238	3,4
1028	610	15	253	136	2
1528	610	15	171	62	0,9
418	711	15	1046	1757	11
585	711	15	748	600	8,5
835	711	15	524	294	4,1
1135	711	15	385	159	2,2
1635	711	15	267	77	1,1

EINSEITIG BEWEGLICH TYP LRN 40 ... ALLSEITIG BEWEGLICH TYP LRK 40 ...

PN 40

Nenn- weite	Laterale Bewegungs- aufnahme	Typ LRN 40	Bestellr Standarda	nummer usführung	LF	RN	LF	RK	Größte Breite
	nominal	LRK 40	LRN	LRK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.	ca.
DN	2λ _N	-	-	-	L _o	G	L _o	G	В
-	mm	-	-	-	mm	kg	mm	kg	mm
300	52	.0300.052.0	440535	440351	855	195	855	228	580
300	101	.0300.101.0	440536	440352	1045	219	1045	252	580
300	147	.0300.147.0	440537	440353	1295	248	1295	281	580
300	194	.0300.194.0	440538	440354	1545	276	1545	309	580
300	297	.0300.297.0	440539	440355	2095	339	2095	372	580
350	51	.0350.051.0	440540	440356	915	278	915	328	675
350	106	.0350.106.0	440541	440357	1135	316	1135	366	675
350	155	.0350.155.0	440542	440358	1385	355	1385	405	675
350	204	.0350.204.0	440543	440359	1635	393	1635	444	675
350	301	.0350.301.0	440544	440360	2135	471	2135	522	675
400	50	.0400.050.0	440545	440361	915	321	915	392	725
400	99	.0400.099.0	440546	440362	1170	371	1170	442	725
400	149	.0400.149.0	440547	440363	1370	410	1370	481	725
400	198	.0400.198.0	440548	440364	1620	455	1620	526	725
400	296	.0400.296.0	440549	440365	2120	552	2120	623	725
450	49	.0450.049.0	440550	440366	945	384	945	435	815
450	107	.0450.107.0	440551	440367	1210	445	1210	496	815
450	154	.0450.154.0	440552	440368	1460	495	1460	545	815
450	201	.0450.201.0	440553	440369	1710	545	1710	596	815
450	304	.0450.304.0	440554	440370	2260	655	2260	705	815
500	47	.0500.047.0	440555	440371	1140	588	1140	710	890
500	96	.0500.096.0	440556	440372	1405	664	1405	786	890
500	146	.0500.146.0	440557	440373	1755	755	1755	877	890
500	196	.0500.196.0	440558	440374	2105	846	2105	968	890
500	296	.0500.296.0	440559	440375	2805	1028	2805	1150	890

Balgmittenabstand	Schwe	ißende		Federrate	
	Außen- durchmesser	Wanddicke	-		
l*	d	s	C _r	C _λ	C _p
mm	mm	mm	N/bar	N/mm	N/mm bar
418	323,9	7,1	109	407	1,7
563	323,9	7,1	81	149	1,4
813	323,9	7,1	56	71	0,7
1063	323,9	7,1	43	42	0,4
1613	323,9	7,1	28	18	0,2
395	355,6	8	173	479	2,3
568	355,6	8	120	155	1,7
818	355,6	8	84	75	0,8
1068	355,6	8	64	44	0,5
1568	355,6	8	44	20	0,2
383	406,4	10	233	669	3,7
610	406,4	10	146	210	1,8
785	406,4	10	113	105	1,3
1035	406,4	10	86	61	0,7
1535	406,4	10	58	28	0,3
398	457	10	281	917	4,5
605	457	10	184	264	2,9
855	457	10	131	132	1,5
1105	457	10	101	79	0,9
1655	457	10	67	35	0,4
495	508	12	370	1142	3,6
703	508	12	261	377	2,7
1053	508	12	174	168	1,2
1403	508	12	130	95	0,7
2103	508	12	87	42	0,3


06

LATERAL-KOMPENSATOR MIT SCHWEISSENDEN

EINSEITIG BEWEGLICH TYP LRN 63 ... ALLSEITIG BEWEGLICH TYP LRK 63 ...

06

Typ LRN

PN 63

Nenn- weite	Laterale Bewegungs- aufnahme	Typ		nummer usführung	LF	RN	LF	RK	Größte Breite ca.
	nominal	LRK 63	LRN	LRK	Baulänge	Gewicht ca.	Baulänge	Gewicht ca.	ca.
DN	2λ _N	-	-	-	L.	G	L,	G	В
_	mm	-	-	-	mm	kg	mm	kg	mm
250	51	.0250.051.0	440560	440376	920	207	920	240	575
250	104	.0250.104.0	440561	440377	1215	243	1215	276	575
250	153	.0250.153.0	440562	440378	1515	279	1515	312	575
250	202	.0250.202.0	440563	440379	1815	314	1815	347	575
300	48	.0300.048.0	440564	440380	950	304	950	354	625
300	100	.0300.100.0	440565	440381	1200	350	1200	400	625
300	150	.0300.150.0	440566	440382	1500	401	1500	451	625
300	200	.0300.200.0	440567	440383	1800	453	1800	503	625
300	299	.0300.299.0	440568	440384	2400	556	2400	606	625
350	49	.0350.049.0	440569	440385	1045	367	1045	401	695
350	97	.0350.097.0	440570	440386	1260	415	1260	449	695
350	147	.0350.147.0	440571	440387	1560	473	1560	507	695
350	198	.0350.198.0	440572	440388	1860	530	1860	564	695
350	299	.0350.299.0	440573	440389	2460	644	2460	678	695
400	52	.0400.052.0	440574	440390	1170	555	1170	671	780
400	102	.0400.102.0	440575	440391	1520	652	1520	768	780
400	152	.0400.152.0	440576	440392	1920	762	1920	879	780
400	196	.0400.196.0	440577	440393	2270	861	2270	978	780
400	297	.0400.297.0	440578	440394	3070	1087	3070	1204	780

Balgmittenabstand	Schwe	ißende		Federrate	
_	Außen- durchmesser	Wanddicke	-		
l*	d	s	C _r	C _λ	C _p
mm	mm	mm	N/bar	N/mm	N/mm bar
385	273	8,8	86	357	1,8
658	273	8,8	50	102	0,7
958	273	8,8	34	48	0,3
1258	273	8,8	26	28	0,2
425	323,9	10	135	448	1,8
625	323,9	10	91	138	1,2
925	323,9	10	62	63	0,6
1225	323,9	10	47	36	0,3
1825	323,9	10	31	16	0,1
448	355,6	12	156	605	2,2
605	355,6	12	115	221	1,8
905	355,6	12	77	99	0,8
1205	355,6	12	58	56	0,5
1805	355,6	12	39	25	0,2
510	406,4	15	233	621	2,6
835	406,4	15	142	192	1,1
1235	406,4	15	96	88	0,5
1585	406,4	15	75	53	0,3
2385	406,4	15	50	24	0,1

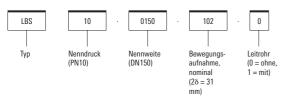
06

LATERAL-KOMPENSATOREN MIT DREHBAREN FLANSCHEN, SCHALLISOLIEREND TYP LBS

Typenbezeichnung

Die Typenbezeichnung besteht aus 2 Teilen

- 1. Typenreihe, definiert durch 3 Buchstaben
- 2. Nenngröße, definiert durch 10 Ziffern


Beispiel

Typ LBS: HYDRA Schallschutz - Kompensator mit drehbaren Flanschen zur Schwingungsaufnahme

Standardausführung/Werkstoffe

Balg vielwandig aus 1.4541 Flansche aus P265GH (1.0425) Betriebstemperatur: bis 400 °C

Typenbezeichnung (beispielhaft)

Bestelltext nach Richtlinie 2014/68/EU "Druckgeräterichtlinie"

Bei Bestellung bitte angeben:

Bei Standardausführung

■ Typenbezeichnung oder Bestellnummer

Mit Werkstoffvarianten

- Typenbezeichnung
- Angabe der Werkstoffe

Für die Prüfung und Dokumentation nach Druckgeräterichtlinie werden folgende Angaben benötigt:

Druckgeräteart nach Art. 1 & 2:

- Behälter Volumen V [I]
- Rohrleitung Nennweite DN _____

Mediumeigenschaft nach Art. 13:

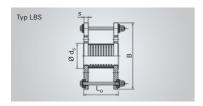
- Gruppe 1 gefährlich
- Gruppe 2 andere

Mediumzustand:

- Gasförmig oder flüssig, wenn PD > 0.5 bar
- Flüssig, wenn PD ≤ 0.5 bar

Auslegungsdaten:

- Max. zul. Druck PS [bar]
- Max./min. zul. Temp. TS [°C]
- Prüfdruck PT [bar] _____

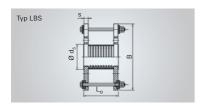

Optional:

■ Kategorie _____

Hinweis

Wir passen den Kompensator an Ihre Anforderungen an, wenn Sie uns die vom Standard abweichenden Maße angeben. Auf Wunsch können Flansche auch mit anderen Bohrbildern / Flanschblattdicken geliefert werden. Hierbei ändert sich ggf. die angegebene Baulänge L0.

TYP LBS 06 ... PN 06

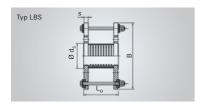


Nennweite		ewegungs- e nominal	Typ	Bestell- nummer Standard-	Baulänge	Gewicht ca.	Größte Breite ca.
	bei 1000 Lastspielen	bei Schwin- gungen	LD3 00	ausführung			
DN	2λ _N	î	-	-	L _o	G	В
-	mm	mm	-	-	mm	kg	mm
50	18	0,5	.0050.018	459873	165	6	240
65	20	0,5	.0065.020	459874	180	7	260
80	21	0,5	.0080.021	459875	190	10	290
100	20	0,5	.0100.020	459876	190	11	310
125	19	0,5	.0125.019	459877	210	15	340
150	31	0,5	.0150.031	459878	265	17	365
200	32	0,5	.0200.032	459879	285	24	420
250	36	0,5	.0250.036	459880	330	39	503
300	40	0,5	.0300.040	459881	345	55	600
350	38	0,5	.0350.038	459882	360	69	650
400	31	0,5	.0400.031	459883	390	89	724

	Flansch ²			Federrate		Eigenfrequenz des Balges		
Bohrbild gem. DIN 1092	Bördel- durchmesser	Blattdicke				axial	radial	
PN	d ₅	S	C _r	C _λ	C _p	ω _α	ω _r	
-	mm	mm	N/bar	N/mm	N/mm bar	Hz	Hz	
06	90	16	6	77	0	200	385	
06	107	16	8,7	91	0	155	340	
06	122	18	11	99	0	145	325	
06	147	18	17	162	0	125	345	
06	178	20	21	212	0	115	355	
06	202	20	25	117	0	90	355	
06	258	22	48	165	0	75	325	
06	312	24	83	298	0	55	285	
06	365	24	153	358	0	50	250	
06	410	26	179	418	0	50	270	
06	465	28	268	501	0	55	335	

2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP LBS 10 ... PN 10

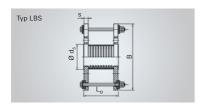


Nennweite		ewegungs- e nominal	Typ LBS 10	Bestell- nummer Standard-	Baulänge	Gewicht ca.	Größte Breite ca.
	bei 1000 Lastspielen	bei Schwin- gungen	220 10	ausführung			
DN	2λ _N	î	-	-	L,	G	В
-	mm	mm	-	-	mm	kg	mm
50	18	0,5	.0050.018	459885	175	9	265
65	20	0,5	.0065.020	459886	200	12	285
80	21	0,5	.0080.021	459887	210	13	300
100	20	0,5	.0100.020	459888	210	15	320
125	19	0,5	.0125.019	459889	215	19	350
150	31	0,5	.0150.031	459890	285	26	385
200	32	0,5	.0200.032	459891	300	35	468
250	36	0,5	.0250.036	459892	345	54	555
300	40	0,5	.0300.040	459893	370	77	629
350	38	0,5	.0350.038	459895	380	93	689
400	31	0,5	.0400.031	459896	430	152	785

	Flansch ²			Federrate		Eigenfrequenz des Balges		
Bohrbild gem. DIN 1092	Bördel- durchmesser	Blattdicke				axial	radial	
PN	d ₅	S	C _r	C _λ	C _p	ω _α	$\omega_{\rm r}$	
-	mm	mm	N/bar	N/mm	N/mm bar	Hz	Hz	
16	92	19	5,7	77	0	200	385	
16	107	20	8,1	136	0	160	315	
16	122	20	10	146	0	150	305	
16	147	22	16	236	0	125	325	
16	178	22	20	364	0	115	355	
16	208	24	29	191	0	90	335	
10	258	24	58	266	0	75	315	
10	320	26	113	339	0	55	260	
10	370	28	178	532	0	45	225	
10	410	28	213	620	0	40	210	
10	465	37	289	1003	0	55	305	

2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

TYP LBS 16 ... PN 16



Nennweite		ewegungs- e nominal	Typ LBS 16	nummer		Gewicht ca.	Größte Breite ca.
	bei 1000 Lastspielen	bei Schwin- gungen	200 10	ausführung			
DN	2λ _N	î	-	-	L,	G	В
-	mm	mm	-	-	mm	kg	mm
50	18	0,5	.0050.017	459898	185	10	265
65	20	0,5	.0065.022	459899	210	12	285
80	21	0,5	.0080.020	459900	210	13	300
100	20	0,5	.0100.015	459901	200	16	320
125	19	0,5	.0125.015	459902	210	19	350
150	31	0,5	.0150.032	459903	290	29	413
200	32	0,5	.0200.033	459904	310	47	500
250	36	0,5	.0250.025	459905	355	73	589
300	40	0,5	.0300.027	459906	385	110	680
350	38	0,5	.0350.025	459907	380	151	667
400	31	0,5	.0400.033	459908	450	193	723

	Flansch ²		Federrate			Eigenfreque	Eigenfrequenz des Balges		
Bohrbild gem. DIN 1092	Bördel- durchmesser	Blattdicke				axial	radial		
PN	d ₅	S	C _r	C _λ	C _p	ω _α	ω _r		
-	mm	mm	N/bar	N/mm	N/mm bar	Hz	Hz		
16	92	19	5,5	119	0	205	360		
16	107	20	7,8	130	0	140	260		
16	122	20	10	178	0	145	300		
16	147	22	16	402	0	135	390		
16	178	22	25	573	0	130	425		
16	208	24	36	220	0	90	315		
16	258	26	78	421	0	70	285		
16	320	32	133	499	0	85	410		
16	375	37	199	741	0	70	360		
16	410	32	214	1035	0	65	350		
16	465	34	250	1192	0	55	275		

2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

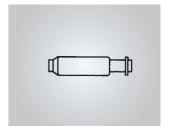
TYP LBS 25 ... PN 25

Nennweite		ewegungs- e nominal	Typ LBS 25	Bestell- nummer Standard-	Baulänge	Gewicht ca.	Größte Breite ca.
	bei 1000 Lastspielen	bei Schwin- gungen		ausführung			
DN	2λ _N	î	-	-	L,	G	В
-	mm	mm	-	-	mm	kg	mm
50	18	0,5	.0050.018	459909	190	10	265
65	20	0,5	.0065.020	459911	215	14	285
80	21	0,5	.0080.021	459912	215	16	300
100	20	0,5	.0100.020	459913	215	20	335
125	19	0,5	.0125.019	459914	230	30	398
150	31	0,5	.0150.031	459915	300	43	460
200	32	0,5	.0200.032	459916	325	66	544
250	36	0,5	.0250.036	459918	370	129	578
300	40	0,5	.0300.040	459919	405	164	634
350	38	0,5	.0350.038	459920	420	242	735

	Flansch ²			Federrate		Eigenfrequenz des Balges		
Bohrbild gem. DIN 1092	Bördel- durchmesser	Blattdicke				axial	radial	
PN	d ₅	S	C _r	C _λ	C _p	ω _α	ω _r	
-	mm	mm	N/bar	N/mm	N/mm bar	Hz	Hz	
40	92	20	5,5	159	0	225	400	
40	107	22	7,5	205	0	160	295	
40	122	24	9,8	289	0	155	325	
40	147	24	19	476	0	135	380	
40	178	26	30	671	0	135	410	
40	208	28	48	310	0	90	315	
25	258	32	94	592	0	105	425	
25	320	35	128	788	0	85	390	
25	375	38	171	1344	0	75	340	
25	410	42	223	1354	0	65	310	

2) Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

Als Ergänzung zu den Standardprogrammen des Kapitels 6 sind in diesem Kapitel eine Reihe von speziellen Programmen besonderer Kompensatoren und verwandter Produkte als Spezialprogramme zusammengefasst. Es handelt sich überwiegend um Produkte, die auf besondere Anwendungen – Motorenbau, Apparatebau, Fernwärme – oder auf gezielte Leistungsdaten, z.B. hohe Drücke, konzipiert sind. Für häufiger benötigte Abmessungsbereiche werden Baureihen angeboten. Außerhalb dieser Bereiche sind Sonderausführungen auf Anfrage möglich. Einen schnellen Überblick über die Spezialprogramme geben Ihnen die nächsten Seiten.



Axial-Kompensatoren mit Entriegelungsautomatik

Typenreihe ARH

Nennweiten DN 40-1000

Druckstufen PN 16 und PN 25

Einwandige Kompensatoren für den Apparatebau

Typenreihe AON

Nennweiten

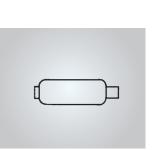
DN 100-3000

Druckstufen

abhängig von der Nennweite

Typenreihe

Axial-Kompensatoren mit Druckentlastung


DRD

Nennweiten

DN 400-1000

Druckstufen

PN 25 und PN 40

Axial-Kompensatoren mit PTFE-Auskleidung

Typenreihe ABT

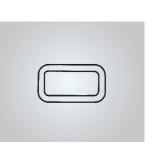
Nennweiten

DN 50-500 DN 50-300

Druckstufen PN10 und PN25

Typenreihe

XOZ und andere


Nennweiten

Seitenlänge bis b = 3700

Rechteck-Kompensatoren

Druckstufen

Max. PS = 2 bar

Axial-Kompensatoren für die Vakuumtechnik

Typenreihe AVZ

. . . –

Nennweiten

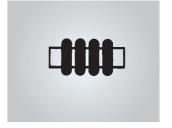
DN 16-500

Druckstufen

PN 1

Kompensatoren und Metallbälge für hohe Drücke

Typenreihe


verschiedene

Nennweiten

DN 10-1000

Druckstufen

Max. PN 400

07

Axial-Kompensatoren für Heizungs- und Ventilatoreninstallation

Typenreihe

verschiedene

Nennweiten

DN 15-100

Druckstufen

PN 6-25

Dünnwandige Rohrzylinder

Durchmesser

 $d_1 = 40-1000$

ABGAS-KOMPENSATOREN MIT SPEZIALBORDEN

Für Abgas-Kompensatoren, die direkt am Motor zu montieren sind, gelten besondere Bedingungen:

- Hohe Temperaturen (v > 400 °C)
- Temperaturspitzen, je nach Motorleistung
- Aufnahme von Wärmedehnungen und Dauerschwingungen
- Kleine Baumaße wegen meist beengter Platzverhältnisse
- Montage und Demontage müssen für Motorüberholungen und Reparaturen schnell durchzuführen sein

Für diese Anforderungen liefern wir, dem speziellen Bedarfsfall angepasst, zum Teil mit dem Motorenhersteller gemeinsam entwickelte Sonderausführungen auf der Basis vorhandener Werkzeugreihen.

Wenn erforderlich können auch Sonderwerkzeuge angefertigt werden. Bei Neuentwicklungen können wir auf einen großen Erfahrungsschatz und geeignete Versuchseinrichtungen zurückgreifen, was sich günstig auf Entwicklungszeit und -kosten auswirkt.

Bild 7.1 Abgas - Kompensatoren mit Spezialbord

Montage von Abgas-Kompensatoren

Die Forderung nach einfacher Montage wird besonders gut durch spezielle Befestigungsborde erfüllt (siehe Bilder 7.2 und 7.3).

Eine von uns entwickelte Schnellbefestigung, der moVix-Anschluss, verwendet einen Drahtpressring aus hitzebeständigem Material als Dicht- und Befestigungselement. Dieser Ring wird zusammen mit dem Konusbord des Balges durch eine V-Band-Schelle angepresst. Als Gegenstück genügt ein unbearbeitetes Rohr (Bild 7.4).

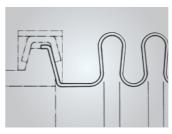


Bild 7.2 Konusbord für V-Band-Schelle

Bild 7.3 Flanschbord für geteilte Flansche

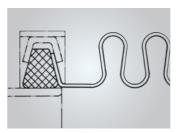


Bild 7.4 moVix-Anschluss

EINWANDIGE KOMPENSATOREN FÜR DEN APPARATEBAU

Das für den Apparate- und Behälterbau konzipierte Spezialprogramm einwandiger Kompensatoren erfüllt die dort gestellten Anforderungen in besonderem Maße:

- Dicke Einzelwand zum direkten Verschweißen mit der Behälterwand
- Große Seitensteifigkeit, die axiale Führungen im Behälter überflüssig macht
- Kleine Wellen ohne Umfangsnähte, die günstige Gesamtbaumaße ergeben

Bild 7.7 Einwandiger Kompensator ohne Anschlussteile

Auslegung und Auswahl der Kompensatoren

Die Angaben in der Tabelle gelten jeweils für eine Welle. Die erforderliche Wellenzahl nw richtet sich nach der Bewegungsaufnahme.

Wellenzahl n.,,

$$n_W = 2\delta_{RT}/2\delta_{WN}$$

Bewegungsaufnahme, kalt $2\delta_{\text{RT}}$ Bewegungsaufnahme je Welle $2\delta_{\text{WN}}$ (Nennbewegung aus Tabelle) Nennweg, Baulänge und Federrate des mehrwelligen Kompensators hängen von der gewählten Wellenzahl (aufgerundete ganze Zahl) ab.

Nennweg $2\delta_{N}$ in mm

$$2\delta_{N} = 2\delta_{WN} \cdot n_{W}$$

(abgerundet auf ganze mm)

Baulänge Lo in mm

$$L_{o} = I_{w} \cdot n_{w} + 2I_{B}$$

Länge der Einzelwelle I_W in mm Länge eines Bordes I_B in mm

Federrate des Einzelbalges c, in N/mm

$$c_{\delta} = c_{\delta W} / n_{W}$$

Federrate der Einzelwelle csw in N/mm

Der Borddurchmesser d_B kann an die vorhandenen Anschlüsse angepasst werden. Die Maßtabellen geben den zulässigen Durchmesserbereich an. Bitte nennen Sie uns das gewünschte Maß bei der Bestellung.

Es ist zu beachten, dass der zylindrische Teil des Bords $I_{\rm BZ}$ mindestens 10 mm lang sein soll. Der Übergangsbereich ist fertigungsbedingt zwischen 4 mm und $I_{\rm h}/2$ lang.

Für den Einsatz in abnahmepflichtigen Anlagen sind Vorprüfung, Abnahmeprüfung, Zeugnisbelegung und Dokumentation bei der Bestellung zu vereinbaren.

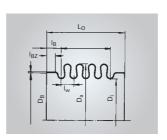


Bild 7.8 Abmessungen / Bezeichnungen

WITZENMANN 1501de/19/10/23/pdf (HYDRA) (HYDRA) 1501de/19/10/23/pdf *WITZENMANN* 395

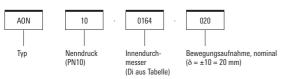
0.7

EINWANDIGE KOMPENSATOREN FÜR DEN APPARATEBAU TYP AON

Typenbezeichnung

Die Typenbezeichnung besteht aus 2 Teilen

- 1. Typenreihe, definiert durch 3 Buchstaben
- 2. Nenngröße, definiert durch 9 Ziffern


Beispiel

Typ AON: HYDRA einwandiger Kompensator für den Apparatebau

Standardausführung/Werkstoffe

Balg einwandig aus 1.4541 Betriebstemperatur: bis 550 °C

Typenbezeichnung (beispielhaft)

Bestelltext nach Richtlinie 2014/68/EU "Druckgeräterichtlinie"

Bei Bestellung bitte angeben:

Bei Standardausführung

■ Typenbezeichnung oder Bestellnummer

Mit Werkstoffvarianten

- Typenbezeichnung
- Angabe der Werkstoffe

Für die Prüfung und Dokumentation nach Druckgeräterichtlinie werden folgende Angaben benötigt:

Druckgeräteart nach Art. 1 & 2:

- Behälter Volumen V [I]
- Rohrleitung Nennweite DN _____

Mediumeigenschaft nach Art. 13:

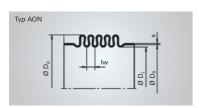
- Gruppe 1 gefährlich
- Gruppe 2 andere

Mediumzustand:

- Gasförmig oder flüssig, wenn PD > 0.5 bar
- Flüssig, wenn PD ≤ 0.5 bar

Auslegungsdaten:

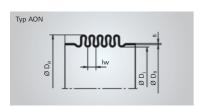
- Max. zul. Druck PS [bar]
- Max./min. zul. Temp. TS [°C]
- Prüfdruck PT [bar] _____


Optional:

■ Kategorie _____

Hinweis

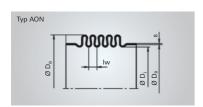
Wir passen den Kompensator an Ihre Anforderungen an, wenn Sie uns die vom Standard abweichenden Maße angeben.


EINWANDIGE KOMPENSATOREN FÜR DEN APPARATEBAU

Nennweite	Nenndruck	Axiale Bewegungs-	Тур	Gewicht pro Welle ca.		Balg	
		aufnahme ie Welle	AON		Wanddicke	Durch	messer
		nominal	AUN			innen	außen
DN	PN	2δ _{wn}	-	G _w	s	D _i	D _a
-	-	mm	-	kg	mm	mm	mm
100	25	1,9	25.0110.	0,1	1	110	145
100	50	1,3	50.0110.	0,2	1,5	110	146
125	20	2,5	20.0135.	0,2	1	135	175
125	40	1,7	40.0135.	0,2	1,5	135	176
150	10	4	10.0164.	0,2	1	164	216
150	20	2,7	20.0164.	0,4	1,5	164	216
150	50	1,9	50.0164.	0,5	2	164	215
200	6	5,8	06.0214.	0,4	1	214	276
200	16	4	16.0214.	0,6	1,5	214	278
200	32	2,8	32.0214.	0,7	2	214	275
250	6	7	06.0268.	0,5	1	268	336
250	12,5	4,4	12.0268.	0,8	1,5	268	334
250	25	3,4	25.0268.	1	2	268	336
250	63	2,2	63.0268.	1,5	3	268	336
300	5	8,4	05.0318.	0,7	1	318	392
300	10	5,6	10.0318.	1	1,5	318	392
300	20	4,2	20.0318.	1,3	2	318	393
300	50	2,8	50.0318.	2	3	318	393
350	4	9,6	04.0350.	0,8	1	350	429
350	10	6,4	10.0350.	1,2	1,5	350	429
350	16	4,6	16.0350.	1,6	2	350	428
350	50	3	50.0350.	2,3	3	350	426

		Balg			Federrate axial je Welle
gewellte Länge	Borddur	chmesser	maximale	wirksamer	_
einer Welle	innen	außen	Wellenzahl	Querschnitt	
I _w	D _{B min.}	D _{B max.}	n _w	А	C _{ow}
mm	mm	mm	-	cm ²	N/mm
12	112	143	9	128	7400
13	112	143	7	129	20500
14	137	173	10	189	5960
15	137	173	6	190	18600
15	166	214	11	284	3370
16	166	213	8	284	11400
17	166	211	8	282	25700
17	216	274	15	471	2500
18	216	275	15	475	7900
19	216	271	16	470	19200
19	271	334	14	716	2400
20	271	331	15	712	8550
21	271	332	14	716	20000
22	271	330	15	716	60500
20	321	390	13	990	2150
21	321	389	13	990	7200
22	321	389	13	993	17300
24	321	387	13	993	52000
21	353	427	12	1192	1950
22	353	426	12	1192	6500
23	353	424	12	1188	16900
25	353	420	13	1182	54000

EINWANDIGE KOMPENSATOREN FÜR DEN APPARATEBAU

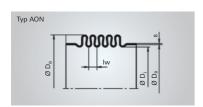


Nennweite	Nenndruck	Axiale Bewegungs-	Тур	Gewicht pro Welle ca.		Balg	
		aufnahme ie Welle	AON		Wanddicke	Durch	messer
		nominal	Aoit			innen	außen
DN	PN	2δ _{wn}	-	G _w	s	D _i	D _a
-	-	mm	-	kg	mm	mm	mm
400	4	10	04.0400.	0,9	1	400	480
400	8	7,2	08.0400.	1,4	1,5	400	484
400	16	5,6	16.0400.	2	2	400	486
400	40	3,8	40.0400.	2,9	3	400	486
450	5	10	05.0451.	1	1	451	530
450	10	6,6	10.0451.	1,5	1,5	451	530
450	16	4,8	16.0451.	2	2	451	530
450	40	3,4	40.0451.	3,1	3	451	530
500	3,2	13,6	03.0502.	1,3	1	502	595
500	8	8,8	08.0502.	2	1,5	502	595
500	12,5	6	12.0502.	2,5	2	502	590
500	32	4,4	32.0502.	3,9	3	502	593
550	6	8,4	06.0552.	1,2	1	552	622
550	12,5	5,8	12.0552.	1,8	1,5	552	624
550	20	4,2	20.0552.	2,3	2	552	623
550	40	3	40.0552.	3,6	3	552	626
600	3,2	14,4	03.0603.	1,6	1	603	698
600	6	9,2	06.0603.	2,4	1,5	603	697
600	12,5	6,6	12.0603.	3,2	2	603	695
600	32	4,2	32.0603.	4,6	3	603	692
700	2,5	16,6	02.0704.	2,1	1	704	807
700	6	12,6	06.0704.	3,2	1,5	704	810
700	10	7,8	10.0704.	4	2	704	804
700	25	5,2	25.0704.	6,1	3	704	806

		Balg			Federrate axial je Welle	
gewellte Länge	Borddurg	chmesser	maximale	wirksamer	-	
einer Welle	innen	außen	Wellenzahl	Querschnitt		
I _w	D _{B min.}	D _{B max.}	n _w	A	C _{sw}	
mm	mm	mm	-	cm ²	N/mm	
22	403	478	12	1521	2100	
23	403	481	11	1534	6000	
24	403	482	11	1541	14100	
26	403	480	11	1541	42000	
24	454	528	12	1890	2350	
24	454	527	12	1890	7900	
25	454	526	12	1890	19800	
27	454	524	12	1890	58000	
24	505	593	10	2363	1600	
25	505	592	10	2363	5500	
26	505	586	11	2341	15800	
28	505	587	11	2354	43000	
25	556	620	13	2706	3800	
25	556	621	13	2715	12000	
26	556	619	13	2711	31300	
28	556	620	13	2725	85000	
26	607	696	10	3323	1800	
26	607	694	10	3318	6200	
27	607	691	10	3308	16400	
29	607	686	10	3293	53700	
27	708	805	9	4483	1600	
28	708	807	9	4501	5100	
29	708	800	9	4465	14800	
31	708	800	9	4477	48800	

TYP AON...

EINWANDIGE KOMPENSATOREN FÜR DEN APPARATEBAU



Nennweite	Nenndruck	Axiale Bewegungs-	Тур	Gewicht pro Welle ca.		Balg	
		aufnahme ie Welle	AON		Wanddicke	Durch	messer
		nominal	71011			innen	außen
DN	PN	2δ _{wn}	-	G _w	s	D _i	D _a
-	-	mm	-	kg	mm	mm	mm
800	2,5	19	02.0805.	2,5	1	805	915
800	6	12	06.0805.	3,7	1,5	805	912
800	10	9,4	10.0805.	5	2	805	915
800	25	5,2	25.0805.	7	3	805	906
900	4	13	04.0914.	2,4	1	914	1002
900	8	9,2	08.0914.	3,6	1,5	914	1004
900	12,5	7	12.0914.	4,9	2	914	1005
900	25	4,6	25.0914.	7,4	3	914	1007
1000	8	10	08.1016.	4,3	1,5	1016	1110
1000	12,5	8	12.1016.	5,8	2	1016	1113
1000	25	5,4	25.1016.	8,8	3	1016	1115
1100	6	11,2	06.1111.	4,9	1,5	1111	1210
1100	12,5	8	12.1111.	6,4	2	1111	1208
1100	20	5,6	20.1111.	9,8	3	1111	1212
1200	6	11,2	06.1211.	5,3	1,5	1211	1310
1200	10	8,4	10.1211.	7,1	2	1211	1310
1200	20	5,6	20.1211.	10,8	3	1211	1312
1400	8	13,8	08.1412.	10,6	2	1412	1536
1400	12,5	10,8	12.1412.	17,1	3	1412	1548
1600	6	15,6	06.1612.	12,9	2	1612	1746
1600	12,5	12	12.1612.	20,7	3	1612	1758
1800	6	16	06.1812.	14,6	2	1812	1946
1800	12,5	11,8	12.1812.	22,9	3	1812	1955

		Balg			Federrate axial je Welle	
gewellte Länge einer Welle	Borddurd	hmesser außen	maximale Wellenzahl	wirksamer Querschnitt		
I _w	D _{B min.}	D _{B max.}	n _w	A	Cow	
mm	mm	mm	-	cm ²	N/mm	
29	809	913	8	5809	1300	
30	809	909	8	5789	5500	
31	809	911	8	5809	12500	
33	809	900	9	5748	56000	
30	918	1000	10	7208	3100	
31	918	1001	10	7223	9800	
32	918	1001	10	7231	23500	
34	918	1001	10	7246	78000	
33	1020	1107	9	8875	9400	
34	1020	1109	9	8900	21000	
36	1020	1109	9	8917	70000	
33	1115	1207	9	10577	9000	
35	1115	1204	9	10559	23000	
37	1115	1206	9	10596	73000	
33	1215	1307	9	12479	9800	
36	1215	1306	9	12479	23500	
38	1215	1306	9	12499	78000	
54	1420	1420	6	17064	13400	
56	1420	1420	6	17203	36000	
54	1620	1620	6	22141	12400	
56	1620	1620	6	22299	33000	
54	1820	1820	6	27730	13800	
56	1820	1820	6	27863	39000	


TYP AON...

EINWANDIGE KOMPENSATOREN FÜR DEN APPARATEBAU

Nennweite	Nenndruck	Bewegungs- Welle ca.			Balg		
		aufnahme je Welle	AON		Wanddicke	Durch	messer
		nominal				innen	außen
DN	PN	2δ _{wn}	-	G _w	s	D _i	D _a
-	-	mm	-	kg	mm	mm	mm
2000	6	18	06.2012.	17,2	2	2012	2156
2000	10	13,6	10.2012.	27,4	3	2012	2168
2200	6	18	06.2212.	18,9	2	2212	2356
2200	10	13,4	10.2212.	29,8	3	2212	2366
2400	5	20	05.2412.	22	2	2412	2568
2400	10	14	10.2412.	33,5	3	2412	2572
2600	5	20	05.2612.	24,1	2	2612	2770
2600	8	14	08.2612.	36,3	3	2612	2772
2800	5	20	05.2812.	25,4	2	2812	2966
2800	8	14	08.2812.	39,1	3	2812	2972
3000	5	19,6	05.3012.	26,9	2	3012	3164
3000	8	14	08.3012.	41,9	3	3012	3172

		Balg			Federrate axial je Welle
gewellte Länge	Borddure	chmesser	maximale	wirksamer	
einer Welle	innen	außen	Wellenzahl	Querschnitt	
I _w	D _{B min.}	D _{B max.}	n _w	A	C _{sw}
mm	mm	mm	-	cm ²	N/mm
54	2020	2020	6	34110	12300
56	2020	2020	6	34307	34000
54	2220	2220	6	40972	13500
56	2220	2220	6	41151	38800
54	2420	2420	6	48695	12000
56	2420	2420	6	48774	38000
54	2620	2620	6	56874	13400
56	2620	2620	6	56917	40000
54	2820	2820	6	65552	14400
56	2820	2820	6	65688	44000
54	3020	3020	6	74894	16000
56	3020	3020	6	75088	47000

Typenbezeichnung

Die Typenbezeichnung besteht aus 2 Teilen

- 1. Typenreihe, definiert durch 3 Buchstaben
- 2. Nenngröße, definiert durch 9 Ziffern

Beispiel

Typ ABT: HYDRA Axial-Kompensator mit PTFE Auskleidung und drehbaren Flanschen

Standardausführung/Werkstoffe

Balg vielwandig aus 1.4541 Flansch aus S235JRG2 (1.0038) oder P250GH (1.0460) Betriebstemperatur: bis 230 °C

Typenbezeichnung (beispielhaft)

Bestelltext nach Richtlinie 2014/68/EU "Druckgeräterichtlinie"

Bei Bestellung bitte angeben:

Bei Standardausführung

■ Typenbezeichnung oder Bestellnummer

Mit Werkstoffvarianten

- Typenbezeichnung
- Angabe der Werkstoffe

Für die Prüfung und Dokumentation nach Druckgeräterichtlinie werden folgende Angaben benötigt:

Druckgeräteart nach Art. 1 & 2:

- Behälter Volumen V [I]
- Rohrleitung Nennweite DN _____

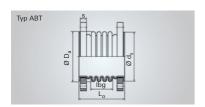
Mediumeigenschaft nach Art. 13:

- Gruppe 1 gefährlich
- Gruppe 2 andere

Mediumzustand:

- Gasförmig oder flüssig, wenn PD > 0.5 bar
- Flüssig, wenn PD ≤ 0.5 bar

Auslegungsdaten:

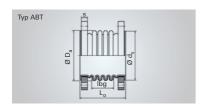

- Max. zul. Druck PS [bar]
- Max./min. zul. Temp. TS [°C]
- Prüfdruck PT [bar] _____

Optional:

■ Kategorie _____

Hinweis

Wir passen den Kompensator an Ihre Anforderungen an, wenn Sie uns die vom Standard abweichenden Maße angeben. Auf Wunsch können Flansche auch mit anderen Bohrbildern / Flanschblattdicken geliefert werden. Hierbei ändert sich ggf. die angegebene Baulänge L0.

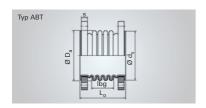

07

Nenn- weite	Axiale Bewegungs-	Тур	Ident- nummer	Baulänge	Gewicht ca.		Flansch ²	
Weite	aufnahme 1) nominal	ABT 10	Standard- ausführung		ca.	Bohrbild gemäß EN 1092	Bördel- durch- messer	Blattdicke
-	2 δ _N	-	-	L,	G	PN	d ₅	s
-	mm	-	-	mm	kg	-	mm	mm
32	9	.0032.009	427980	147	3,9	40	70	18
32	18	.0032.018	427982	222	4,1	40	70	18
40	11	.0040.011	427985	159	4,5	40	80	18
40	22	.0040.022	427986	244	4,8	40	80	18
50	13	.0050.013	427987	183	6	16	92	20
50	27	.0050.027	427988	298	7	16	92	20
65	17	.0065.017	427989	183	7	16	107	20
65	32	.0065.032	427990	289	8	16	107	20
80	20	.0080.020	427991	188	8	16	122	20
80	35	.0080.035	427992	278	9	16	122	20
100	20	.0100.020	427994	182	10	16	147	22
100	40	.0100.040	427995	270	11	16	147	22
125	29	.0125.029	427996	224	14	16	178	22
125	50	.0125.050	427997	366	17	16	178	22
150	30	.0150.030	427998	251	18	16	208	24
150	60	.0150.060	427999	391	23	16	208	24
200	42	.0200.042	428000	250	25	10	258	24
200	78	.0200.078	428001	422	33	10	258	24
250	44	.0250.044	428002	245	32	10	320	26
250	81	.0250.081	428003	394	38	10	320	26

	Balg			saufnahme 1) ninal	Federrate			
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral	
D _a	lbg	Α	2 α _N	2λ _N	C _δ	C _α	C _{).}	
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm	
61	75	20	20	4,7	471	2,7	327	
61	150	20	31	19	235	1,3	40	
74	85	30,6	20	5,3	466	4	384	
74	170	30,6	30	21	232	1,9	48	
88	95	44,7	19	5,7	457	5,7	439	
88	209	44,3	32	26	344	4,2	68	
106	95	67,1	20	6	352	6,6	507	
107	200	67,4	30	24	278	5,3	91	
120	100	87,3	20	6,5	312	7,6	525	
121	189	87,6	29	22	270	6,6	128	
148	88	135	17	4,6	495	18	1671	
148	176	135	28	18	247	9,3	208	
169	120	179	20	7,9	397	19	956	
172	260	181	30	29	409	20	214	
204	140	261	18	7,8	743	54	1926	
204	280	261	29	31	371	27	240	
258	140	432	19	8,5	442	53	1883	
261	310	434	30	35	391	48	344	
318	120	666	17	6,1	525	98	4696	
318	270	667	24	25	341	63	604	

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

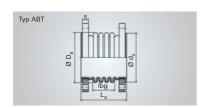

Nenn- weite	Axiale Bewegungs-	Тур	Ident- nummer	Baulänge	Gewicht ca.	Flansch ²			
	aufnahme 1) nominal	ABT 10	Standard- ausführung			Bohrbild gemäß EN 1092	Bördel- durch- messer	Blattdicke	
_	2 δ _N	-	-	L _o	G	PN	d ₅	S	
_	mm	-	-	mm	kg	-	mm	mm	
300	55	.0300.055	428004	291	40	10	370	26	
300	95	.0300.095	428005	433	51	10	370	26	
350	60	.0350.060	428006	304	60	10	410	30	
350	92	.0350.092	428007	415	71	10	410	30	
400	52	.0400.052	428008	293	74	10	465	32	
400	104	.0400.104	428009	437	85	10	465	32	
450	70	.0450.070	428010	342	95	10	520	36	
450	130	.0450.130	428011	549	127	10	520	36	
500	56	.0500.056	428012	323	116	10	570	38	
500	126	.0500.126	428013	523	144	10	570	38	
600	70	.0600.070	428014	351	147	10	670	42	
600	126	.0600.126	428015	499	168	10	670	42	

Balg				saufnahme ¹⁾ ninal	Federrate			
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral	
D _a	lbg	Α	2α _N	2λ _N	C ₈	C _{cc}	C _λ	
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm	
374	165	932	17	8,9	522	136	3447	
375	306	932	25	28	405	106	780	
408	170	1119	17	9,1	501	157	3741	
409	280	1119	23	23	436	137	1203	
463	144	1449	13	5,9	767	312	10331	
463	288	1449	22	23	383	156	1290	
516	185	1821	15	9	600	306	6154	
516	390	1813	24	35	531	271	1225	
571	160	2235	12	5,6	1172	735	19775	
571	360	2235	22	29	521	327	1736	
678	185	3201	12	6,8	824	737	14818	
678	333	3201	17	22	457	409	2538	

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

0-

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0


Nenn- weite	Axiale Bewegungs-	Тур	Ident- nummer	Baulänge	Gewicht ca.		Flansch ²	
	aufnahme 1) nominal	ABT 25	Standard- ausführung			Bohrbild gemäß EN 1092	Bördel- durch- messer	Blattdicke
-	2 δ _N	-	-	L _o	G	PN	d ₅	s
_	mm	-	-	mm	kg	-	mm	mm
32	8	.0032.008	428016	148	4	40	70	18
32	15	.0032.015	428017	208	4,2	40	70	18
40	10	.0040.010	428018	165	4,6	40	80	18
40	17	.0040.017	428019	265	5	40	80	18
50	15	.0050.015	428021	203	6	40	92	20
50	24	.0050.024	428022	310	7	40	92	20
65	14	.0065.014	428023	199	8	40	107	22
65	26	.0065.026	428024	183	9	40	107	22
80	16	.0080.016	428027	214	10	40	122	24
80	29	.0080.029	428029	306	11	40	122	24
100	21	.0100.021	428030	224	14	40	147	26
100	35	.0100.035	428032	330	17	40	147	26
125	20	.0125.020	428033	222	20	40	178	28
125	35	.0125.035	428034	300	22	40	178	28
150	26	.0150.026	428035	263	24	40	208	30
150	47	.0150.047	428036	375	30	40	208	30
200	30	.0200.030	428037	243	36	25	258	32
200	52	.0200.052	428038	330	40	25	258	32
250	35	.0250.035	428039	272	51	25	320	35
250	61	.0250.061	428040	368	57	25	320	35

Balg				saufnahme 1) ninal	Federrate			
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral	
D _a	lbg	Α	2 α _N	2λ _N	C _δ	C _a	C _λ	
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm	
61	75	19,7	17	4,2	794	4,5	551	
61	135	19,7	24	14	440	2,4	94	
75	90	30,8	17	5	776	6,8	579	
75	190	30,5	22	18	678	5,9	113	
88	114	44,3	19	7,9	630	7,9	419	
89	220	44,2	25	24	708	9,1	128	
108	105	67,2	16	5,4	1075	20	1292	
108	189	67,2	23	18	596	11,4	221	
123	115	87,8	16	5,9	1192	29	1562	
123	207	87,8	23	19	663	16	267	
150	120	135,2	16	6,5	891	33	1643	
151	225	135	23	20	759	29	400	
172	104	181	14	4,7	1025	53	3351	
172	182	181	20	14	586	29	625	
204	140	260	15	6,8	1443	106	3738	
204	252	260	21	22	802	59	640	
261	116	436	13	5	1186	145	7463	
261	203	436	19	15	677	83	1391	
322	128	672	13	5,1	1244	236	9912	
322	224	672	18	16	711	135	1849	

Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

07

²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

Nenn- weite	Axiale Bewegungs-	Тур	Ident- nummer	Baulänge	Gewicht ca.	Flansch ²			
	aufnahme 1)) nominal	ABT 25	Standard- ausführung			Bohrbild gemäß EN 1092	Bördel- durch- messer	Blattdicke	
_	2 δ _N	-	-	L _o	G	PN	d ₅	s	
_	mm	-	-	mm	kg	-	mm	mm	
300	40	.0300.040	428041	297	71	25	375	38	
300	70	.0300.070	428042	405	80	25	375	38	
350	42	.0350.042	428043	309	103	25	410	42	
350	73	.0350.073	428044	420	112	25	410	42	
400	44	.0400.044	428045	345	146	25	465	48	
400	88	.0400.088	428046	505	166	25	465	48	
450	50	.0450.050	428047	402	190	25	520	54	
450	90	.0450.090	428048	566	219	25	520	54	
500	48	.0500.048	428049	373	228	25	570	58	
500	96	.0500.096	428050	541	264	25	570	58	
600	48	.0600.048	428051	386	325	25	670	68	
600	96	.0600.096	428052	550	369	25	670	68	

Balg				saufnahme 1) ninal	Federrate			
Außen- durchmesser	gewellte Länge	wirksamer Querschnitt	angular	lateral	axial	angular	lateral	
D _a	lbg	Α	2 α _N	2 λ _N	C _δ	C _{cc}	C _{).}	
mm	mm	cm ²	grad	mm	N/mm	Nm/grd	N/mm	
377	144	932	12	5,6	1470	387	12844	
377	252	932	18	17	839	221	2395	
410	148	1116	12	5,5	1489	469	14731	
410	259	1116	17	17	851	267	2749	
464	160	1439	11	5,5	2068	842	22617	
464	320	1439	18	22	1033	421	2824	
523	205	1831	11	7,1	1953	1011	16539	
523	369	1831	16	23	1085	561	2836	
578	168	2255	9,6	5	2211	1406	34269	
578	336	2255	16	20	1105	703	4280	
680	164	3190	8,1	4,1	2329	2091	53466	
680	328	3190	13	16	1164	1045	6683	

¹⁾ Leitrohr, Bewegungsaufnahme: Das Leitrohr ist nur für axiale Bewegung ausgelegt. Die Bewegungen (axial, angular, lateral) gelten für 1000 Lastwechsel und sind alternativ zu sehen. D.h. ihre prozentualen Anteile sollen in Summe 100 % nicht überschreiten.

0.7

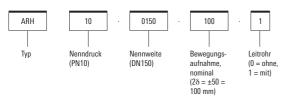
²⁾ Auf Wunsch mit anderen Bohrbildern / Blattdicken lieferbar. Ggf. ändert sich dadurch die Baulänge L0

AXIAL-KOMPENSATOREN MIT VORSPANNUNG TYP ARH

Typenbezeichnung

Die Typenbezeichnung besteht aus 2 Teilen

- 1. Typenreihe, definiert durch 3 Buchstaben
- 2. Nenngröße, definiert durch 10 Ziffern


Beispiel

Typ ARH: HYDRA Axial-Kompensator mit Vorspannung

Standardausführung/Werkstoffe

Balg vielwandig aus 1.4541 Betriebstemperatur: bis 300 °C.

Typenbezeichnung (beispielhaft)

Bestelltext nach Richtlinie 2014/68/EU "Druckgeräterichtlinie"

Bei Bestellung bitte angeben:

Bei Standardausführung

■ Typenbezeichnung oder Bestellnummer

Mit Werkstoffvarianten

- Typenbezeichnung
- Angabe der Werkstoffe

Für die Prüfung und Dokumentation nach Druckgeräterichtlinie werden folgende Angaben benötigt:

Druckgeräteart nach Art. 1 & 2:

- Behälter Volumen V [I]
- Rohrleitung Nennweite DN

Mediumeigenschaft nach Art. 13:

- Gruppe 1 gefährlich
- Gruppe 2 andere

Mediumzustand:

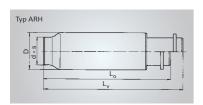
- Gasförmig oder flüssig, wenn PD > 0.5 bar
- Flüssig, wenn PD ≤ 0.5 bar

Auslegungsdaten:

- Max. zul. Druck PS [bar] _____
- Max./min. zul. Temp. TS [°C]
- Prüfdruck PT [bar] _____

Optional:

■ Kategorie _____

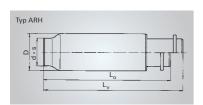

Hinweis

Wir passen den Kompensator an Ihre Anforderungen an, wenn Sie uns die vom Standard abweichenden Maße angeben.

,	7	=	1
	ш		1

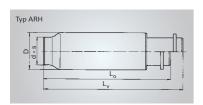
Nennweite	Axiale Bewegungs-	Тур	Bau	länge	Gewicht ca.	
	aufnahme nominal	ARH 16	ungespannt	vorgespannt		
_	2 δ _N	-	L _o	L _v	G	
-	mm	_	mm	mm	kg	
50	34	.0050.034.0	290	307	3	
50	66	.0050.066.0	450	483	4	
50	100	.0050.100.0	620	670	6	
65	40	.0065.040.0	290	310	5	
65	80	.0065.080.0	450	490	7	
65	120	.0065.120.0	650	710	10	
80	80	.0080.080.0	500	540	8	
80	120	.0080.120.0	630	690	10	
80	160	.0080.160.0	850	930	14	
100	90	.0100.090.0	555	600	11	
100	140	.0100.140.0	700	770	15	
100	180	.0100.180.0	960	1050	21	
125	100	.0125.100.0	550	600	15	
125	150	.0125.150.0	700	775	20	
125	200	.0125.200.0	950	1050	29	
150	100	.0150.100.0	550	600	20	
150	150	.0150.150.0	700	775	27	
150	200	.0150.200.0	950	1050	37	
200	100	.0200.100.0	580	630	30	
200	150	.0200.150.0	750	825	42	
200	200	.0200.200.0	950	1050	57	
250	100	.0250.100.0	580	630	42	
250	150	.0250.150.0	750	825	57	
250	200	.0250.200.0	950	1050	82	

Anschwe	eißenden	Außenrohr- durchmesser	Balg wirksamer	Federrate axial	Abscherkraft	zulässiges Torsions-
Außen- durchmesser	Wanddicke		Querschnitt			moment
d	s	D	A	C _o	F _s	Mt
mm	mm	mm	cm ²	N/mm	kN	kNm
60,3	2,9	106	45	60	5	0,3
60,3	2,9	106	45	30	5	0,3
60,3	2,9	106	45	45	5	0,3
76,1	2,9	120	68	60	8	0,4
76,1	2,9	120	68	30	8	0,4
76,1	2,9	120	68	45	8	0,4
88,9	3,2	135	88	115	11	0,8
88,9	3,2	135	88	40	11	0,8
88,9	3,2	135	88	60	11	0,8
114,3	3,6	161	135	120	11	1,1
114,3	3,6	161	135	40	11	1,1
114,3	3,6	161	135	60	11	1,1
139,7	3,6	196	201	120	19	2
139,7	3,6	196	201	45	19	2
139,7	3,6	196	201	60	19	2
168,3	4,0	224	279	120	19	2,4
168,3	4,0	224	279	50	19	2,4
168,3	4,0	224	279	60	19	2,4
219,1	4,5	287	448	110	27	4,1
219,1	4,5	287	448	60	27	4,1
219,1	4,5	287	448	55	27	4,1
273,0	5,0	344	684	120	40	7,0
273,0	5,0	344	684	75	40	7,0
273,0	5,0	344	684	60	40	7,0

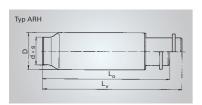


Nennweite	Axiale Bewegungs-	Тур	Baul	änge	Gewicht ca.
	aufnahme nominal	ARH 16	ungespannt	vorgespannt	
_	2 δ _N	-	L _o	L _v	G
-	mm	-	mm	mm	kg
300	100	.0300.100.0	580	630	56
300	150	.0300.150.0	800	875	77
300	200	.0300.200.0	950	1050	105
350	100	.0350.100.0	580	630	70
350	150	.0350.150.0	800	875	95
350	200	.0350.200.0	950	1050	130
400	100	.0400.100.0	580	630	85
400	150	.0400.150.0	800	875	110
400	200	.0400.200.0	1000	1100	160
450	100	.0450.100.0	650	700	100
450	150	.0450.150.0	800	875	140
450	200	.0450.200.0	1000	1100	190
500	100	.0500.100.0	650	700	120
500	150	.0500.150.0	800	875	160
500	200	.0500.200.0	1000	1100	220
600	100	.0600.100.0	650	700	150
600	150	.0600.150.0	825	900	210
600	200	.0600.200.0	1000	1150	280

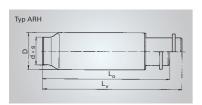
Anschwe	Anschweißenden		Außenrohr- Balg durchmesser wirksamer		Abscherkraft	zulässiges Torsions-
Außen- durchmesser	Wanddicke		Querschnitt			moment
d	s	D	A	C _δ	F _s	Mt
mm	mm	mm	cm ²	N/mm	kN	kNm
323,9	5,6	405	958	120	40	8,2
323,9	5,6	405	958	80	40	8,2
323,9	5,6	405	958	60	40	8,2
355,6	5,6	437	1115	120	40	9,0
355,6	5,6	437	1115	230	40	9,0
355,6	5,6	437	1115	60	40	9,0
406.4	6,3	487	1442	240	65	18,0
406.4	6,3	487	1442	250	65	18,0
406.4	6,3	487	1442	120	65	18,0
457.2	6,3	545	1821	300	71	23,0
457.2	6,3	545	1821	270	71	23,0
457.2	6,3	545	1821	150	71	23,0
508.0	6,3	610	2240	360	73	25,0
508.0	6,3	610	2240	240	73	25,0
508.0	6,3	610	2240	180	73	25,0
609.6	6,3	711	3197	560	94	39,0
609.6	6,3	711	3197	370	94	39,0
609.6	6,3	711	3197	280	94	39,0


TYP ARH 16... PN 16

AXIAL-KOMPENSATOREN MIT VORSPANNUNG


Nennweite	Axiale Bewegungs-	Тур	Baul	Gewicht ca.	
	aufnahme nominal	ARH 16	ungespannt	vorgespannt	
-	2 δ _N	-	L,	L _v	G
-	mm	-	mm	mm	kg
700	100	.0700.100.0	650	700	190
700	150	.0700.150.0	875	950	260
700	200	.0700.200.0	1050	1150	350
800	100	.0800.100.0	700	750	240
800	150	.0800.150.0	875	950	320
800	200	.0800.200.0	1050	1150	430
900	100	.0900.100.0	700	750	300
900	150	.0900.150.0	900	975	400
900	200	.0900.200.0	1050	1150	530
1000	100	.1000.100.0	700	750	370
1000	150	.1000.150.0	900	975	500
1000	200	.1000.200.0	1050	1150	660

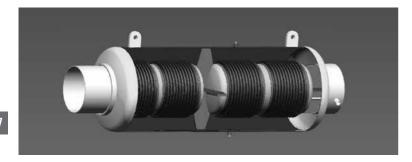
Anschweißenden		Außenrohr- durchmesser wirksamer		Federrate axial	Abscherkraft	zulässiges Torsions-
Außen- durchmesser	Wanddicke		Querschnitt			moment
d	s	D	A	C _δ	F _s	Mt
mm	mm	mm	cm ²	N/mm	kN	kNm
711,0	7,1	820	4318	540	98	46,0
711,0	7,1	820	4318	300	98	46,0
711,0	7,1	820	4318	245	98	46,0
813,0	8,0	930	5615	600	133	69,0
813,0	8,0	930	5615	380	133	69,0
813,0	8,0	930	5615	300	133	69,0
914,0	10,0	1050	7173	870	126	78,0
914,0	10,0	1050	7173	440	126	78,0
914,0	10,0	1050	7173	350	126	78,0
1016,0	10,0	1160	8834	860	124	86,0
1016,0	10,0	1160	8834	490	124	86,0
1016,0	10,0	1160	8834	380	124	86,0


Nennweite	Axiale Bewegungs-	Тур	Baul	änge	Gewicht ca.
	aufnahme nominal	ARH 25	ungespannt	vorgespannt	
-	2 δ _N	-	L,	L _v	G
-	mm	-	mm	mm	kg
50	34	.0050.034.1	300	317	4
50	66	.0050.066.1	450	483	5
50	100	.0050.100.1	640	690	7
65	40	.0065.040.1	300	320	6
65	80	.0065.080.1	450	490	8
65	120	.0065.120.1	664	725	11
80	70	.0080.070.1	480	515	9
80	110	.0080.110.1	610	665	12
80	140	.0080.140.1	810	880	17
100	80	.0100.080.1	560	600	13
100	120	.0100.120.1	720	780	18
100	160	.0100.160.1	970	1050	24
125	84	.0125.084.1	558	600	18
125	130	.0125.130.1	735	800	24
125	170	.0125.170.1	965	1050	34
150	90	.0150.090.1	555	600	24
150	140	.0150.140.1	760	830	32
150	180	.0150.180.1	960	1050	45

Anschwe	Anschweißenden		Balg wirksamer	irksamer	Abscherkraft	zulässiges Torsions-
Außen- durchmesser	Wanddicke		Querschnitt			moment
d	s	D	A	C _δ	F _s	Mt
mm	mm	mm	cm ²	N/mm	kN	kNm
60,3	2,9	106	45	80	5	0,2
60,3	2,9	106	45	40	5	0,2
60,3	2,9	106	45	70	5	0,2
76,1	2,9	120	68	90	6	0,4
76,1	2,9	120	68	45	6	0,4
76,1	2,9	120	68	65	6	0,4
88,9	3,2	135	88	160	10	0,8
88,9	3,2	135	88	65	10	0,8
88,9	3,2	135	88	80	10	0,8
114,3	3,6	161	135	200	10	0,9
114,3	3,6	161	135	70	10	0,9
114,3	3,6	161	135	100	10	0,9
139,7	3,6	196	201	200	17	1,9
139,7	3,6	196	201	80	17	1,9
139,7	3,6	196	201	100	17	1,9
168,3	4,0	224	279	200	17	2,1
168,3	4,0	224	279	90	17	2,1
168,3	4,0	224	279	100	17	2,1

Nennweite	Axiale Bewegungs-	Тур	Baul	Baulänge		
	aufnahme nominal	ARH 25	ungespannt	vorgespannt		
-	2δ _N	-	L,	L _v	G	
-	mm	-	mm	mm	kg	
200	100	.0200.100.1	600	650	36	
200	150	.0200.150.1	785	860	50	
200	200	.0200.200.1	1000	1100	70	
250	100	.0250.100.1	600	650	50	
250	150	.0250.150.1	785	860	70	
250	200	.0250.200.1	1000	1100	95	
300	100	.0300.100.1	600	650	70	
300	150	.0300.150.1	800	875	90	
300	200	.0300.200.1	1000	1100	95	
350	100	.0350.100.1	600	650	80	
350	150	.0350.150.1	800	875	110	
350	200	.0350.200.1	1000	1100	150	
400	100	.0400.100.1	600	650	100	
400	150	.0400.150.1	800	875	130	
400	200	.0400.200.1	1000	1100	190	
450	100	.0450.100.1	650	700	120	
450	150	.0450.150.1	825	900	160	
450	200	.0450.200.1	1050	1150	220	

Anschwe	Anschweißenden		Außenrohr- durchmesser wirksamer		Abscherkraft	zulässiges Torsions-
Außen- durchmesser	Wanddicke		Querschnitt			moment
d	s	D	A	C _δ	F _s	Mt
mm	mm	mm	cm ²	N/mm	kN	kNm
219,1	4,5	287	448	200	36	5,6
219,1	4,5	287	448	100	36	5,6
219,1	4,5	287	448	100	36	5,6
273,0	5,0	344	684	200	36	6,9
273,0	5,0	344	684	110	36	6,9
273,0	5,0	344	684	100	36	6,9
323,9	5,6	405	958	220	70	15,0
323,9	5,6	405	958	120	70	15,0
323,9	5,6	405	958	110	70	15,0
355,6	6,3	437	1115	200	70	16,0
355,6	6,3	437	1115	160	70	16,0
355,6	6,3	437	1115	100	70	16,0
406,4	7,1	487	1442	300	70	18,0
406,4	7,1	487	1442	280	70	18,0
406,4	7,1	487	1442	150	70	18,0
457,2	8,0	545	1821	460	99	30,0
457,2	8,0	545	1821	320	99	30,0
457,2	8,0	545	1821	230	99	30,0



Nennweite	Axiale Bewegungs-	Тур	Baul	Gewicht ca.	
	aufnahme nominal	ARH 25	ungespannt	vorgespannt	
-	2δ _N	-	L _o	L _v	G
-	mm	-	mm	mm	kg
500	100	.0500.100.1	650	700	140
500	150	.0500.150.1	825	900	190
500	200	.0500.200.1	1050	1150	260
600	100	.0600.100.1	650	700	180
600	150	.0600.150.1	825	900	240
600	200	.0600.200.1	1050	1150	340
700	100	.0700.100.1	700	700	220
700	150	.0700.150.1	925	1000	300
700	200	.0700.200.1	1050	1150	420
800	100	.0800.100.1	700	750	270
800	150	.0800.150.1	925	1000	370
800	200	.0800.200.1	1100	1200	520
900	100	.0900.100.1	700	750	330
900	150	.0900.150.1	925	1000	460
900	200	.0900.200.1	1100	1200	650
1000	100	.1000.100.1	700	750	410
1000	150	.1000.150.1	925	1000	570
1000	200	.1000.200.1	1100	1200	810

Anschw	Anschweißenden		Außenrohr- durchmesser wirksamer		Abscherkraft	zulässiges Torsions-
Außen- durchmesser	Wanddicke		Querschnitt			moment
d	s	D	A	C _δ	F _s	Mt
mm	mm	mm	cm ²	N/mm	kN	kNm
508,0	8,0	610	2240	610	131	33,0
508,0	8,0	610	2240	410	131	33,0
508,0	8,0	610	2240	305	131	33,0
609,6	10,0	711	3197	630	131	52,0
609,6	10,0	711	3197	500	131	52,0
609,6	10,0	711	3197	315	131	52,0
711,0	11,0	820	4318	1230	198	95,0
711,0	11,0	820	4318	770	198	95,0
711,0	11,0	820	4318	560	198	95,0
813,0	12,5	930	5615	1160	198	108,0
813,0	12,5	930	5615	725	198	108,0
813,0	12,5	930	5615	580	198	108,0
914,0	14,2	1050	7173	1750	183	119,0
914,0	14,2	1050	7173	875	183	119,0
914,0	14,2	1050	7173	700	183	119,0
1016,0	14,2	1160	8834	1580	183	132,0
1016,0	14,2	1160	8834	900	183	132,0
1016,0	14,2	1160	8834	700	183	132,0

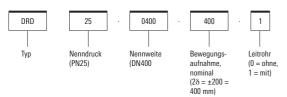
_

AXIAL-KOMPENSATOREN MIT DRUCKENTLASTUNG TYP DRD

Typenbezeichnung

Die Typenbezeichnung besteht aus 2 Teilen

- 1. Typenreihe, definiert durch 3 Buchstaben
- 2. Nenngröße, definiert durch 10 Ziffern


Beispiel

Typ DRD: HYDRA Axial-Kompensator mit Druckentlastung

Standardausführung/Werkstoffe

Balg vielwandig aus 1.4541 Betriebstemperatur: bis 300 °C

Typenbezeichnung (beispielhaft)

Bestelltext nach Richtlinie 2014/68/EU "Druckgeräterichtlinie"

Bei Bestellung bitte angeben:

Bei Standardausführung

■ Typenbezeichnung oder Bestellnummer

Mit Werkstoffvarianten

- Typenbezeichnung
- Angabe der Werkstoffe

Für die Prüfung und Dokumentation nach Druckgeräterichtlinie werden folgende Angaben benötigt:

Druckgeräteart nach Art. 1 & 2:

- Behälter Volumen V [I]
- Rohrleitung Nennweite DN _____

Mediumeigenschaft nach Art. 13:

- Gruppe 1 gefährlich
- Gruppe 2 andere

Mediumzustand:

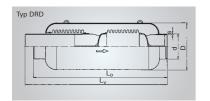
- Gasförmig oder flüssig, wenn PD > 0.5 bar
- Flüssig, wenn PD ≤ 0.5 bar

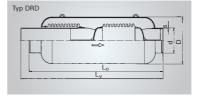
Auslegungsdaten:

- Max. zul. Druck PS [bar]
- Max./min. zul. Temp. TS [°C]
- Prüfdruck PT [bar] _____

Optional:

■ Kategorie _____


Hinweis


Wir passen den Kompensator an Ihre Anforderungen an, wenn Sie uns die vom Standard abweichenden Maße angeben.

TYP DRD 25... PN 25

AXIAL-KOMPENSATOREN MIT DRUCKENTLASTUNG

TYP DRD 40... PN 40

Nenn- weite	Axiale Bewegungs-	Тур	Baulänge		Gewicht ca.	Anschw	eißenden	Mantel- außen-	Federrate axial
	aufnahme nominal	DRD 25	unge- spannt	vorge- spannt		Außen- durch- messer	Wand- dicke	durch- messer	
_	2 δ _N	-	L _o	L _v	G	d	s	D	C _δ
_	mm	-	mm	mm	kg	mm	mm	mm	N/mm
400	360	0400.360.1	2800	2980	720	406,4	7,1	650	249
500	360	0500.360.1	2900	3080	1000	508	8	813	341
600	380	0600.380.1	3100	3290	1380	610	10	950	448
700	360	0700.360.1	3350	3530	2000	711	10	1150	552
800	300	0800.300.1	3350	3500	2250	813	10	1250	796
900	300	0900.300.1	3350	3500	3200	914	12	1500	932
1000	300	1000.300.1	3500	3650	3750	1016	12	1600	1173

Nenn- weite	Axiale Bewegungs-	Тур	Baulänge		Gewicht Ansch		eißenden	Mantel- außen-	Federrate axial
aufnahme nominal	DRD 40	unge- spannt	vorge- spannt		Außen- durch- messer	Wand- dicke	durch- messer		
-	2 δN	-	L _o	L _v	G	d	S	D	C _δ
-	mm	-	mm	mm	kg	mm	mm	mm	N/mm
400	300	0400.300.1	3000	3150	1000	406,4	8	711	411
500	240	0500.240.1	2850	2970	1400	508	10	813	756
600	240	0600.240.1	2900	3020	2050	610	12	950	980
700	240	0700.240.1	3350	3470	3100	711	12	1150	1107
800	240	0800.240.1	3400	3520	3650	813	15	1250	1401
900	220	0900.220.1	3450	3560	5250	914	15	1500	1744
1000	220	1000.220.1	3500	3610	6350	1016	20	1600	2250

07

RECHTECK-KOMPENSATOREN TYP XOZ, XFZ, XRZ, XSZ

Auslegung und Auswahl der Kompensatoren

Die erforderliche Wellenzahl $n_{\rm W}$ richtet sich nach der Bewegungsaufnahme:

Wellenzahl n_w

$$n_{W} = 2\delta_{RT}/2\delta_{WN}$$

Axiale Bewegungsaufnahme kalt, $2\delta_{RT}$ in mm Axiale Bewegungsaufnahme je Welle, $2\delta_{WN}$ in mm

Nennweg, gewellte Länge und Federrate des mehrwelligen Kompensators hängen von der gewählten Wellenzahl ab (aufgerundete ganze Zahl):

Gewellte Länge in mm

$$I = I_{w} \cdot n_{w}$$

Länge der Einzelwelle $I_{\rm W}$ in mm Wellenzahl $n_{\rm W}$

Für die Baulänge L_0 des kompletten Kompensators sind noch die Längen der Borde oder der Anschlussteile zu berücksichtigen.

Axiale Verstellkraftrate einer Welle $\mathbf{c}_{_{\delta W}}$ in N/mm

$$c_{\delta W} = c_{\delta E} / n_W + 2(b_1 + b_2)c_{\delta I}$$

Federrate der vier Ecken, $c_{\delta E}$ in N/mm Federrate für 1 mm Profillänge, $c_{\delta I}$ in N/mm Seitenlänge b_1 , b_2 in mm

Federrate des kompletten Kompensators c, in N/mm

$$c_{\delta} = c_{\delta W} / n_{W}$$

Anschlussteile	Typenreihe
ohne	XOZ
Flansche	XFZ
Schweißenden	XRZ
andere	XSZ

Bild 7.9 Anschlüsse / Typenreihe

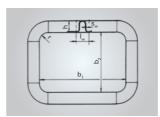


Bild 7.10 Typ XOZ

Im Bedarfsfall bitten wir um Ihre Anfrage.

0.7

AXIAL-KOMPENSATOREN FÜR VAKUUMTECHNIK

Kompensatoren für die Vakuumtechnik werden meist nur mit einlagigen, relativ dünnwandigen Bälgen ausgeführt. Mit ihren kleinen Verstellkräften und -momenten belasten sie die Anschlussflansche nur sehr gering – eine unabdingbare Voraussetzung für die absolute Dichtheit der Flanschverbindungen im Betrieb. Die Bälge werden speziell durch "Bördelnähte" spaltfrei und mit den Anschlussflanschen verschweißt.

Hohe und höchste Dichtheiten sind mittels He-Lecktest nachweisbar; die kleinste nachweisbare Leckrate beträgt 10⁻¹⁰ mbar·l·s⁻¹.

Als Anschlüsse werden überwiegend Flansche eingesetzt:

DN 16-50

Kleinflansche nach DIN 28 403

DN 63-500

Klammerflansche nach DIN 28 404

Die Vakuum-Kompensatoren werden auf Anfrage für den jeweiligen Bedarfsfall in Bezug auf Baulänge und Bewegungsaufnahme ausgelegt.

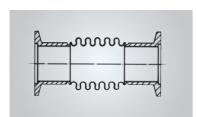


Bild 7.11 Axial-Kompensator mit Kleinflanschen

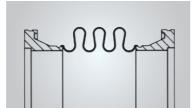


Bild 7.12 Axial-Kompensator mit Klammerflanschen

AXIAL-KOMPENSATOREN FÜR HEIZ- UND LÜFTUNGS-INSTALLATIONEN

Speziell für den Bedarf der Heizungs- und Sanitärtechnik haben wir eine Baureihe von Axial-Kompensatoren entwickelt, deren unterschiedliche Anschlussarten den jeweils gegebenen Montagebedingungen gerecht werden:

- Schweißenden
- Drehbare oder feste Flansche, gebohrt nach DIN
- Gewindenippel mit Innen- oder Außen-Rohrgewinde

Die Anschlussteile sind standardmäßig aus C-Stahl, während die gewellten Metallbälge aus Edelstahl 1.4541 bestehen. Sie gewährleisten ausgezeichnete Korrosionsbeständigkeit für einen jahrzehntelangen sicheren Betrieb. Dementsprechend sind die Kompensatoren – im Gegensatz zum Standardprogramm – für 10.000 Volllastspiele ausgelegt, wie sie in der Haustechnik aufgrund der häufigeren Temperaturwechsel erforderlich sind.

Bei einigen Ausführungen sind innere Führungsrohre vorgesehen, die eine fluchtende Montage erleichtern, Gleit- bzw. Festpunkte jedoch nicht ersetzen. Ausführungen mit äußerem Schutzrohr sind bereits werksseitig vorgespannt. Sie schließen Montagefehler weitgehend aus und vereinfachen das Anbringen der Wärmedämmung.

Nennweiten: DN 15-100 Nenndrücke: PN 6-25

Genaue Abmessungen und Leistungsdaten finden Sie in unserer gesonderten Druckschrift "Metallschläuche und Kompensatoren für die TGA".

Bild 7.13 Kompensatoren für die Haustechnik

KOMPENSATOREN UND BÄLGE FÜR HOHE DRÜCKE

In unseren Standardprogrammen haben wir Kompensatoren aufgeführt, deren Nenndruckstufen für den Rohrleitungs- und Anlagenbau normalerweise völlig ausreichen. Sollte im Einzelfall ein höherer Nenndruck erforderlich sein, z. B. in einem Wärmetauscher, können auch dafür Kompensatoren geliefert werden, die dann individuell auszulegen sind. Wenn durch die kombinierten Anforderungen von Druck und Bewegung bei innendruckbeaufschlagten Kompensatoren technische Grenzen erreicht werden, können Lösungsmöglichkeiten durch den Einsatz von Verstärkungsringen oder durch Druckbeaufschlagung des Balges von außen gegeben sein (siehe auch Kapitel 8 "Sonderausführungen"). Darüber hinaus sind Metallbälge, die z. B. als Spindelabdichtung in Ventilen eingesetzt werden, häufig für hohe Drücke vorzusehen, die meist von außen wirken.

Bild 7.14 Hochdruckbälge

Liefermöglichkeiten

Das folgende Diagramm gibt einen Überblick über unsere Liefermöglichkeiten in Bezug auf vielwandige Hochdruck-Bälge mit lyraförmigen Wellen. Dargestellt sind die maximal erreichbaren Drücke bei Außendruckbelastung. Im grauen Bereich sind bei einigen Nennweiten zusätzliche Werkzeuge erforderlich.

Bei Innendruckbelastung ergeben sich nahezu die gleichen Drücke, wenn aufgrund geringer Bewegungswerte nur wenige Wellen ausreichen. Bei größerer erforderlicher Bewegungsaufnahme reduziert sich der zulässige Druck aus Stabilitätsgründen.

Im Bedarfsfall bitten wir um Ihre Anfrage.

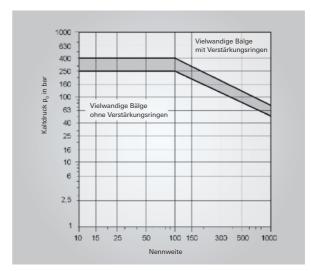


Bild 7.15 Maximaler Druck von vielwandigen Metallbälgen aus 1.4541 (Lyrawellen)

07

DÜNNWANDIGE ROHRZYLINDER

Dünnwandige längsnahtgeschweißte Rohrzylinder sind in beliebigen Durchmessern lieferbar. Die Durchmesser sind eng tolerierbar.

Je nach Bedarfsfall können wir die Zylinder mit Bördelkanten, Sicken oder Wellen versehen und sie ggf. auch zu Behältern weiterverarbeiten.

Bild 7.16 Dünnwandige Rohrzylinder, längsnahtgeschweißt

Liefermöglichkeiten

Die nebenstehende Tabelle gibt die möglichen Lieferlängen für 1.4541 und 1.4571 an, die auch für Werkstoffe mit ähnlichen Festigkeitskennwerten gelten. Bei Werkstoffen mit stark abweichenden Kennwerten müssen die Lieferlängen unter Umständen reduziert werden.

Neben Austeniten wie 1.4541 und 1.4571 kommen auch Sonderwerkstoffe in Frage. Fast alle im Kapitel 17 aufgeführten Edelstähle und Sonderlegierungen sind lieferbar.

Edelstahlrohre mit festen Durchmessern sind im Durchmesserbereich von DN 5 – 150 und größeren Längen bis ca. 6 m lieferbar. Wir bitten um Ihre Anfrage.

Lieferlängen

Durchmesserbereich	Länge, wanddickenabhängig in mm gültig für Austenite 1.4541 and 1.4571							
	Standardwanddicken s _N in mm							
	0,3	0,3 0,5 0,7		1,0				
d _i	-	-	-	-				
mm	-	-	-	-				
40 - 60	600	400	250	200				
61 - 80	800	800	600	400				
81 - 90	1200	800	600	400				
91 - 110	1200	1200	800	800				
111 - 150	1200	1200	1200	800				
151 - 1000	1200	1200	1200	1200				

Bild 7.17

Kompensatoren aus Sonderwerkstoffen

Aggressive Medien, ein extrem niedriges Gewicht, elektrische Leitfähigkeit und magnetische Permeabilität können Gründe sein, Kompensatorbälge oder komplette Kompensatoren aus Sondermaterial, wie:

- Kupfer
- Aluminium
- Titan

einzusetzen. Die Herstellung erfordert besondere Kenntnisse und Erfahrungen in der Schweiß- und Umformtechnik

Bild 8.1 Aluminium-Kompensator als Hohlleiter

Bild 8.2 Kompensator mit Druckentlastung

Bild 8.3 Kammer-Kompensator aus Titan für die Chemische Industrie

Bild 8.4 Metallbalg aus Kupfer

Bild 8.5 Axial-Kompensator mit Aluminium-Flanschen zur Schwingungsaufnahme

Bild 8.6 Axial-Kompensator aus Alloy 825 für Wärmetauscher (DN 1200/PN 40)

Axial-Kompensatoren für Chemikalientanker

Der Sonder-Kompensator für Produkt- und Chemikalientanker verbindet die hohe Flexibilität und Druckfestigkeit vielwandiger Kompensatoren mit höchster Beständigkeit gegen Chemikalien und Seewasser, die der PTFE-Liner bietet. Seine wesentliche zusätzliche Eigenschaft: Spülbarkeit auch bei horizontaler Leitungsführung!

Der Axial-Kompensator in Sonderausführung hat einen vielwandigen Edelstahlbalg mit einer speziellen Wellenform, die Stützelemente für den Innenliner aufnehmen kann. Der Innenliner aus Polytetrafluorethylen (PTFE) ist beständig gegen die zu transportierenden Chemikalien. Seine flach gewellte Form und seine glatte Oberfläche verhindern das Ansetzen der geförderten Produkte und erlauben es, die Leitung zu spülen. Auch bei horizontalem Einbau des Kompensators bleiben keine Chemikalien zurück. Der Liner ist an Flansche mit korrosionsfestem Sonderanstrich gebördelt und dient gleichzeitig als Dichtung. Die Außenlage des Balges besteht aus der Nickelbasislegierung Alloy 825. Sie ist korrosionsfest, beständig gegen Seewasser und erlaubt den Einsatz des Kompensators auf Deck.

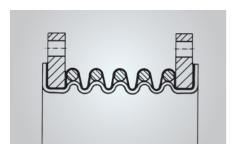


Bild 8.7 Axial-Kompensator für Chemikalientanker

Axial-Kompensatoren, außendruckbelastet

Bei dieser Ausführung ist der Balg so angeordnet, dass er durch Außendruck beaufschlagt wird. Die Konstruktion wird dadurch zwar aufwändiger, weil Bälge mit größerem Durchmesser und ein zusätzlicher druckfester Außenmantel erforderlich werden, bietet aber einige Vorteile, die entscheidend sein können:

- Sehr große Bewegungsaufnahme bei kleinen Verstellkräften ist möglich, weil Stabilitätsprobleme, wie sie bei Innendruckbeaufschlagung zu berücksichtigen wären, praktisch keine Rolle spielen
- Der Balg ist durch den Außenmantel vor Beschädigung geschützt
- Es bleiben keine Rückstände von aggressiven Flüssigkeiten oder Kondensaten in den Wellen stehen, da sie ablaufen können
- Es bleiben keine Ablagerungen von Feststoffen in den Wellen haften, da die Wellen nicht in der Strömung liegen
- Die vollständige Entwässerung und Entlüftung des Kompensators und der anschließenden Rohrleitung ist möglich (Hinweis: Die Entwässerung der Balgwellen ist bei den kleinwelligen HYDRA Kompensatoren normalerweise nicht erforderlich, da nur ein geringes Flüssigkeitsvolumen in den Wellen stehen bleiben kann)

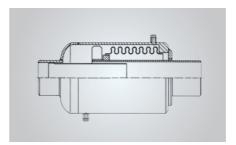


Bild 8.8 Axial - Kompensator, außendruckbelastet

Axial-Kompensatoren für Gasleitungen unter Brücken

Der außendruckbeaufschlagte Axial-Kompensator ist speziell für die dynamisch beanspruchten Brückenleitungen konzipiert. Er erfüllt höchste Sicherheitsanforderungen, wie sie für verkehrsreiche Straßenbrücken gefordert werden.

Seine Merkmale sind:

- Große axiale Bewegungsaufnahme für die Kompensation langer Rohrstrecken
- Eventuell entstehende aggressive Kondensate benetzen die Balgwellen nur von außen und können abfließen bevor Korrosion entsteht
- Das Leitrohr bietet einen glatten, strömungsfreien Durchgang
- Der Balg umschließt eine nur einseitig offene Ringkammer, die mit geeignetem Gerät eine periodische Dichtheitskontrolle ermöglicht
- Das äußere Schutzrohr verhindert Beschädigung des Balges bei Transport und Montage und erhöht damit die Sicherheit
- Ablassschrauben im Schutzmantel ermöglichen eine Entwässerung der Leitung
- Eine verstellbare Montage- und Vorspanneinrichtung erleichtert den Einbau

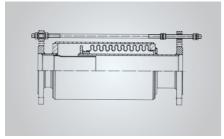


Bild 8.9 Axial-Kompensator für Gasleitungen unter Brücken

Axial-Kompensatoren mit Lecküberwachung

Bei der Förderung kritischer Medien (toxisch, explosiv, brennbar) kann eine permanente Lecküberwachung an den beweglichen Leitungselementen sinnvoll sein, um evtl. auftretende Leckagen frühzeitig zu erkennen. Der vielwandige Balg bietet dabei einen besonderen Vorteil, die patentierte Leckanzeige.

Kontrollbohrungen in die Zwischenlagen – im Bordbereich des Balges definiert gesetzt – werden in einen Ringraum geführt, der mit einer Leckkontrolle verbunden wird. Dadurch lässt sich eine eventuelle Schädigung, die irgendwo an der Innenlage beginnt, rechtzeitig feststellen (siehe Kapitel 10, "Vielwandigkeit als Prinzip").

Andere Formen der Lecküberwachung sind bei kleineren Betriebsdrücken mit doppelwandigem Balg und Sonderanschlussteilen (Bild 8.11) oder mit einem Kammer-Kompensator (Bild 8.12) möglich.

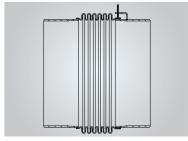


Bild 8.10 Axial-Kompensator mit Lecküberwachung

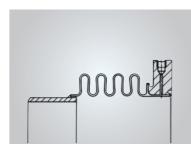


Bild 8.11 Lecküberwachung bei zweilagigem Balg

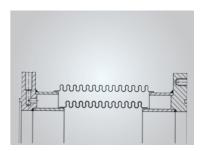


Bild 8.12 Kammer-Kompensator zur Lecküberwachung

Kammer-Kompensatoren

(Bild 8.13)

Beheizte Rohrleitungen oder Doppelrohrleitungen zur Förderung zähflüssiger oder bei Raumtemperatur erstarrender Medien benötigen Kammer-Kompensatoren zur Kompensation der Wärmedehnungen oder für "kräftefreie" Anschlüsse. Eine häufig verwendete Ausführung ist der dargestellte Kammer-Kompensator mit Flanschanschluss, bei dem das eigentliche Medium innen fließt, während die Ringkammer zur Beheizung dient.

Der Anschluss für das Heizmedium (z.B. Dampf) erfolgt über die Flansche, häufig mittels Metallschläuchen (Bild 8.13). Statt Flanschen können auch Schweißenden als Anschlussteile vorgesehen werden. Kammer-Kompensatoren lassen sich ebenso für zu kühlende Leitungen einsetzen. Speziell zur Dichtheitskontrolle beispielsweise bei toxischen Medien können Kammer-Kompensatoren verwendet werden, deren Ringkammer mit einer Leckanzeige versehen wird (Bild 8.12).

Kompensatoren mit Torusbalg

(Bild 8.14)

Diese Balgform ist für sehr hohe Drücke bei relativ geringen Bewegungsanforderungen geeignet, Verhältnisse die im Apparatebau auftreten können. Die Umfangsspannungen im Balg werden durch die dickwandigen Anschlussteile reduziert. Wenn aufgrund der geforderten Bewegungsaufnahme mehrere Toruswellen erforderlich sind, müssen dazwischen Verstärkungsringe angeordnet werden (Bild 8.15).

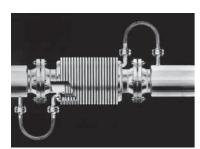


Bild 8.13 Kammer-Kompensator

Bild 8.14 Kompensator mit Torusbalg

Kompensatoren mit Verstärkungsringen

(Bild 8.15)

Verstärkungsringe werden eingesetzt, wenn aufgrund hoher Betriebsdrücke, meist bei großen Durchmessern, die Umfangsspannungen unzulässige Werte annehmen und eine Erhöhung der Lagenzahl der Wanddicke des Balges technisch nicht mehr möglich oder wirtschaftlich nicht mehr sinnvoll ist. Die Verstärkungsringe übernehmen jetzt die Umfangsspannungen während die Gesamtwand des Balges noch relativ dünn und beweglich bleiben kann.

Axial-Kompensatoren als Ausbaustücke

(Bild 8.16)

Dieser Kompensator wird verwendet um für die Montage und Demontage von Armaturen Platz zu schaffen. Dafür wird der Kompensator von der Armatur gelöst und über Gewindestangen zusammengedrückt.

Gleichzeitig reduziert der Kompensator die Anschlusskräfte und -momente an der Armatur. Der Einsatz von Axial-Kompensatoren ist durch die axiale Druckkraft begrenzt. Bei zu hohen Kräften müssen verankerte Ausbaustücke verwendet werden.

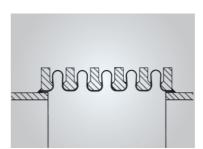


Bild 8.15 Kompensator mit Verstärkungsringen

Bild 8.16 Axial-Kompensator als Ausbaustück

Kompensatoren mit Vorspanneinrichtungen

(Bild 8.17 / 8.18)

Axial-Kompensatoren können mit Vorspanneinrichtungen versehen werden, um die Montage auf der Baustelle zu erleichtern.

Der Vorspannbügel stellt eine feste Vorspannung dar, mit der der Kompensator werksseitig auf das Einbaumaß fixiert wird. Der Bügel ist vor der Inbetriebnahme der Leitung zu entfernen (Bild 8.17).

Die verstellbare Vorspanneinrichtung, bestehend aus Gewindestangen und Muttern, die die Anschlussteile der Kompensatoren miteinander verbinden, lässt eine einfache und zeitsparende Einstellung der Einbaulänge für die Montage zu (Bild 8.18). Siehe Kapitel 7, Typ ARH.

Vorspanneinrichtungen werden üblicherweise nur zur Aufnahme der Verstellkräfte ausgelegt. Sie können weder zusätzliche Lasten noch die axialen Druckkräfte aufnehmen.

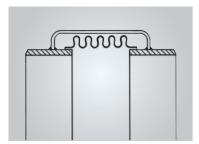


Bild 8.17 Kompensator mit Vorspannbügel

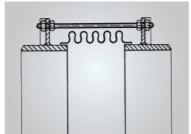


Bild 8.18 Kompensator mit Vorspannung durch Gewindestange

Kompensatoren mit Hubbegrenzungen

(Bild 8.19)

Hubbegrenzungen können bei Axial-Kompensatoren vorgesehen werden, wenn:

- Im Sonderfall eine Hubverteilung auf mehrere Kompensatoren vorgenommen werden muss
- Druckprüfungen im Baufortschritt durchgeführt werden müssen, bevor die Endfestpunte arretiert sind
- Im Störfall mit Festpunktversagen oder übermäßigen Leitungsbewegungen zu rechnen ist (Kapitel 7, Typ ARH)

Flansch-Kompensator mit äußerem Schutzrohr

(Bild 8.20)

Wenn aufgrund des Einbauortes mit Beschädigung der Bälge durch äußere Einflüsse gerechnet werden muss, können Kompensatoren mit äußeren Schutzrohren versehen werden. Bei der dargestellten Ausführung ist das Schutzrohr abnehmbar, auch um das Montieren der Flansche zu ermöglichen.

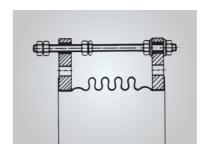


Bild 8.19 Kompensator mit Hubbegrenzung

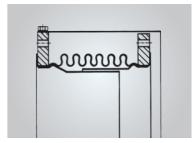


Bild 8.20 Flansch-Kompensator mit äußerem Schutzrohr

Axial-Kompensatoren mit Vorschweißflanschen

(Bild 8.22)

Die Axial-Kompensatoren des Standardprogramms sind außer mit drehbaren Flanschen bei gleicher Baulänge auch mit glatten Festflanschen lieferbar. Die gezeigte Sonderausführung kann eingesetzt werden, wenn Vorschweißflansche mit Dichtleiste gefordert werden und die etwas größere Baulänge keine Rolle spielt.

Universal-Kompensatoren als Zentrifugenanschluss

(Bild 8.23)

Der Universal-Kompensator ist für eine größere laterale Schwingungsamplitude dauerfest ausgelegt und hat eine seitliche Eigenfrequenz, die genügend weit oberhalb der Erregerfrequenz (Drehzahl) der Zentrifuge liegt.

08

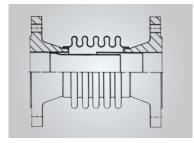


Bild 8.22 Axial-Kompensator mit Vorschweißflanschen

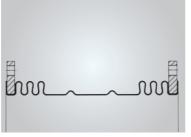


Bild 8.23 Universal-Kompensator als Zentrifugenanschluss

Universal-Kompensator für Heißwindleitungen

(Bild 8.24)

Dieser Kompensator ist für axiale und laterale Bewegungsaufnahme ausgelegt. Sein Leitrohr ist so konstruiert, dass auch in den Extrempositionen des Kompensators keine großen Spalten entstehen und dass das Gewicht der feuerfesten Auskleidung aufgenommen werden kann.

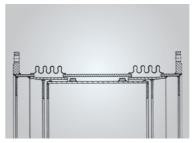


Bild 8.24 Universal-Kompensator für eine Heißwindleitung DN 2500

Lateral-Kompensatoren für Papiermaschinen

(Bild 8.25)

Dieser Kompensator wurde für den Anschluss der Stofflaufkästen von Papiermaschinen, die eine Pendelbewegung machen müssen, entwickelt. Der bewegliche Teil besteht aus einem armierten PTFE-Liner, der auf der Innenseite absatz- und wellenfrei ausgeführt ist, so dass sich kein Fördergut festsetzen kann. Neben einer Lateralbewegung bis zu 300 mm kann eine leichte Winkelbewegung von 2 bis 4 Grad aufgenommen werden, sowie geringe Torsion.

Lateral-Kompensator mit Diffusor

(Bild 8.26)

Dieser Kompensator wurde für den Anschluss an Verdichter entwickelt. Er vereinigt einen elastischen Kompensator mit dem Diffusor. Er kann als "kräftefreier" Anschluss gleichzeitig Montageversatz ausgleichen und Schwingungen aufnehmen.

Bild 8.25 Lateral - Kompensator für Papiermaschinen

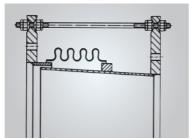


Bild 8.26 Lateral-Kompensator mit Diffusor

Angular-Kompensatoren mit konischem Leitrohr

(Bild 8.27)

Um die Beweglichkeit zu erhalten, müssen Leitrohre in Angular-Kompensatoren genügend Spiel aufweisen. Eine Möglichkeit der Ausführung ist das einteilige konische Leitrohr. Es ist zu beachten, dass dadurch der Querschnitt etwas verringert wird.

Angular-Kompensatoren mit Innenverankerung

(Bild 8.28)

Diese Ausführung – als Einfachgelenk oder als Kardan – kann sinnvoll sein, wenn eine Außenverankerung aus Platzgründen nicht möglich ist. Falls eine Reduzierung des Querschnittes nicht akzeptiert werden kann, lässt sich die Verankerung auch so ausbilden, dass ein nahezu glatter Durchgang ermöglicht wird. Dafür ist dann allerdings ein größerer Balg einzusetzen. Es ist zu beachten, dass das Innengelenk mit dem Medium in Berührung kommt.

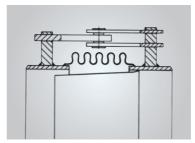


Bild 8.27 Angular - Kompensator mit konischem Leitrohr

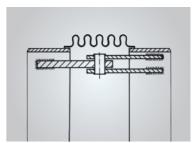
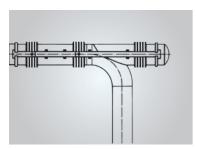


Bild 8.28 Angular - Kompensator mit Innenveran-

Eckentlastete Kompensatoren


(Bild 8.29)

Die Auslegung und Ausführung der eckentlasteten Kompensatoren richtet sich nach dem Bedarfsfall und erfolgt unter Berücksichtigung der Betriebsbedingungen und der erforderlichen Bewegungswerte (siehe auch Kapitel 12 "Axiale Druckkraft und entlastete Konstruktionen"). Bild 8.29 zeigt einen axial und lateral beweglichen eckentlasteten Lateral-Kompensator.

Angular-Kompensatoren mit PTFE-Lagern

(Bild 8.30)

Wenn für den besonderen Anwendungsfall die an sich kleinen Verstellmomente unserer Angular-Kompensatoren noch zu groß sein sollten, kann durch den Einsatz eines Speziallagers das Reibmoment in den Drehgelenken noch verringert werden. Das von uns dafür eingesetzte PTFE-Verbundlager erträgt aufgrund seines besonderen Aufbaus hohe Flächenpressungen, ohne dass die Kunststoff-Gleitschicht weggedrückt werden kann. Dadurch bleiben die guten Gleiteigenschaften des Lagers über die gesamte Betriebszeit unverändert erhalten. Das Lager erträgt Temperaturen bis 280 °C und ist absolut wartungsfrei.

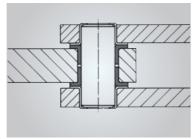


Bild 8.30 Verankerung mit Speziallager

Oval-Kompensatoren

(Bild 8.31)

Oval-Kompensatoren sind zwar in beliebigen Abmessungen herstellbar und mit den benötigten Anschlussteilen zu versehen. Ihr Einsatz ist jedoch nur dort zu vertreten, wo ein Element mit rundem Querschnitt nicht eingesetzt werden kann.

Da für jede Abmessung kostspielige Werkzeuge erforderlich sind, wird der Einsatz eines ovalen Kompensators nur dann wirtschaftlich, wenn größere Stückzahlen gebraucht werden. Die Druckfestigkeit eines ovalen Balges ist begrenzt.

Gleitringdichtung

(Bild 8.32)

Hierbei handelt es sich um einen gewellten Metallbalg als Teil einer Gleitringdichtung an einer rotierenden Welle. Der Balg ist druckdicht am Gehäuse befestigt und trägt auf der anderen Seite den Gleitring. Elastizität und Federungsvermögen des Balges gewährleisten, dass der Dichtring immer voll anliegt.

Bild 8.31 Metallbalg mit ovalem Querschnitt

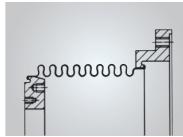
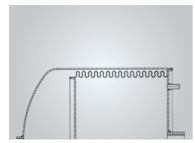


Bild 8.32 Gleitringdichtung

Volumenausgleichsgefäß

(Bild 8.33)


Ein Metallbalg übernimmt den temperaturbedingten Volumenausgleich einer Flüssigkeit durch Streckung oder Verkürzung. Die Bewegung erfolgt gegen ein komprimiertes Gaspolster, wenn die Flüssigkeit unter Druck steht.

Ventilspindelabdichtung

(Bild 8.34)

An Ventile werden hohe Anforderungen in Bezug auf Dichtheit und Wartungsfreiheit gestellt. Sie werden heute zur Abdichtung der axial bewegten Ventilspindel mit Metallbälgen statt mit Stoffbuchsen versehen. Hohe und höchste Drücke können so bei absoluter Dichtheit sicher und wartungsfrei bewältigt werden.

08

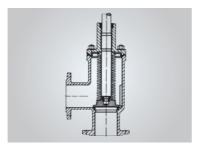


Bild 8.34 Ventilspindelabdichtung

Druckdose

(Bild 8.35)

Ein beiderseits mit Deckeln verschlossener Metallbalg kann mit Hydraulikdruck beaufschlagt eine druckabhängige Kraft übertragen, ähnlich einem Hydraulikkolben, bleibt dabei jedoch absolut dicht. Das Bild zeigt ein Hydraulikelement, das zum Anpressen von Schleusentoren eingesetzt wurde.

Elastische Kupplung

(Bild 8.36)

Metallbälge können als elastische Kupplungselemente eingesetzt werden, wobei sie Torsionsmomente innerhalb ihrer Festigkeits- und Stabilitätsgrenzen übertragen und axiale, angulare und laterale Fluchtungsfehler der rotierenden Wellenenden ausgleichen.

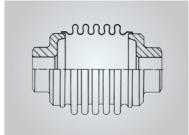


Bild 8.36 Elastische Kupplung

Durch den Einbau von Kompensatoren in eine Rohrleitung verändert sich deren Verhalten zum Teil erheblich. Festpunkte und Führungen werden anders beansprucht und müssen andere Aufgaben übernehmen als bei einer unkompensierten Leitung.

Die allgemeinen Regeln, die bei der Montage der Kompensatoren beachtet werden müssen, sind im Kapitel 16 "Montagehinweise" zusammengefasst.

Dieses Kapitel beschreibt, was bei der Dimensionierung und Ausführung der Festpunkte, Führungen und Auflager zu beachten ist. Außerdem sind Hinweise enthalten für:

- Verwendung von Lateral-Kompensatoren innerhalb eines Drei-Gelenk-Systems
- Einbau von eckentlasteten Kompensatoren
- Möglichkeiten der Vorspannung

(HYDRA®)

Im Zweifelsfall bitten wir, die Unterstützung unserer Fachleute in Anspruch zu nehmen.

FESTPUNKTE

Alle Kompensationssysteme müssen durch ausreichend bemessene Festpunkte begrenzt sein, um eine sichere Funktion des Kompensationssystems zu gewährleisten. Man unterscheidet vier Arten von Festpunkten, die unterschiedliche Funktionen und Belastungen haben.

Endfestpunkte

Sie befinden sich entweder an den Enden eines zu kompensierenden Leitungssystems oder trennen zwei unterschiedliche Kompensationssysteme (Bild 9.1). Sie werden im Regelfall hoch belastet.

Auf Endfestpunkte wirken folgende Kräfte:

- Axiale Druckkraft (nur bei Axial-Kompensatoren)
- Verstellkraft des Kompensators oder des Kompensationssystems
- Reibkraft zwischen Rohrleitung und Auflagern
- Sonstige anlagenbedingten Kräfte (Wind, Schnee, Rohr- und Mediengewichte)

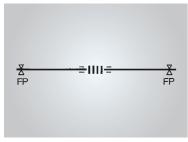


Bild 9.1 Gerader Leitungsstrang mit Axial-Kompensator und Endfestpunkten

Zwischenfestpunkte

Sie trennen zwei gleichartige in gerader Achse liegende Kompensationssysteme und werden im Regelfall nur gering belastet (Bild 9.2).

Auf Zwischenfestpunkte wirken folgende Differenzkräfte:

- Axiale Druckkraft (nur bei Axial-Kompensatoren), wenn unterschiedliche Nennweiten getrennt werden oder der Druck unterschiedlich groß ist (Strömungsverluste an Drosseln, Klappen), ein Axial-Kompensator eines anderen Fabrikates hat auch bei gleicher Nennweite meist eine andere Druckkraftwirkung, die je nach Bauart zu erheblichen Differenzkräften führen kann
- Verstellkraft, wenn unterschiedlich lange Kompensatoren mit unterschiedlichen Bewegungen verwendet werden, auch bei gleichen Kompensatoren und gleichen Dehnungen sollte als Differenzkraft 30 % der Verstellkraft angenommen werden, da die Federraten der Kompensatoren aufgrund von Fertigungsund Materialtoleranzen Schwankungen in diesem Bereich unterliegen
- Reibkraft zwischen Rohrleitung und Führungen, auf diesen Punkt ist besonderes Augenmerk zu richten, da je nach Lagerart die Reibkräfte im Betrieb sehr stark differieren können
- Sonstige anlagenbedingte Kräfte, die für die Festpunktbelastung berücksichtigt werden müssen

Bei Druckproben eines Leitungsabschnittes oder wenn sich in einem System ein Schieber befindet, wird der Zwischenfestpunkt zum Endfestpunkt.

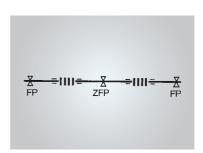


Bild 9.2 Gerader Leitungsstrang durch Zwischenfestpunkt in zwei kompensierte Abschnitte unterteilt

Gleitfestpunkte

Sie dienen als Führung der Rohrleitung, müssen aber mindestens in einer Richtung als Festpunkt wirken. z. B. beim Einsatz von Universal-Kompensatoren (Bild 9.3). Auf Gleitfestpunkte wirken die selben Kräfte wie auf Endfestpunkte. Zusätzlich ist zu beachten, dass im Gleitfestpunkt aufgrund der wirkenden hohen Festpunktkraft eine große Reibkraft entsteht. Diese Reibkraft muss auch bei der Dimensionierung des Endfestpunktes FP, berücksichtigt werden.

Kniefestpunkte

Sie trennen zwei gleichartige Kompensationssysteme im Scheitel einer Leitungsabwinkelung. Diese Festpunktart ist eine Mischung aus Endfestpunkt und Zwischenfestpunkt. Es müssen demnach die gleichen Kräfte wie bei Endfestpunkte berücksichtigt werden, aber auch auftretende Differenzkräfte wie bei Zwischenfestpunkten, wenn die Abwinkelungen zu klein sind.

Durch die Strömungsumlenkung am Rohrbogen entsteht auch eine Zentrifugalkraft, die bei axialer Kompensation ebenfalls vom Kniefestpunkt aufgenommen werden muss. Im Regelfall ist diese Kraft jedoch vernachlässigbar klein. Die einzelnen Kraftkomponenten müssen geometrisch addiert werden, um Größe und Richtung der resultierenden Festpunktkraft F, zu erhalten.

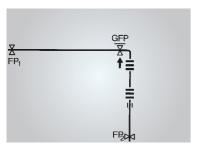


Bild 9.3 Abgewinkelte Leitung mit Universal-Kompensator und einem Gleitfestpunkt

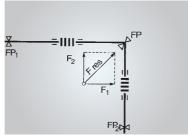


Bild 9.4 Abgewinkeltes System mit Axial-Kompensatoren und Kniefestpunkt

FESTPUNKTKRÄFTE

Axiale Druckkraft

Im Kapitel 12 "Axiale Druckkraft und entlastete Konstruktionen" wird die Entstehung und Wirkung der Druckkraft ausführlich beschrieben, so dass an dieser Stelle die Berechnungsformel genügt.

Axiale Druckkraft F_n in kN

(nur bei axialer Kompensatoren)

(9.1)
$$F_p = 0.01A \cdot p$$

Wirksamer Querschnitt A in cm² (siehe Maßtabelle der Axial-Kompensatoren) Druck p in bar (max. Druck, z.B. Prüfdruck, einsetzen)

Ist der Innendruck größer als der Außendruck würde der Kompensator ohne Festpunkte durch die Druckkraft gelängt werden, ist der Außendruck dagegen größer als der Innendruck, würde der Kompensator gestaucht. Werden beim Bau eines umfangreichen Rohrsystems während des Baufortschrittes abschnittsweise Druckprüfungen ohne Arretierung der starken Endfestpunkte durchgeführt, müssen Axial-Kompensatoren durch entsprechende Hubbegrenzer geschützt sein (siehe z. B. Kapitel 7, Typ ARH) oder die Zwischenfestpunkte müssen entsprechend stärker dimensioniert werden.

Verstellkraft des Kompensationssystems

Bei Axial-Kompensatoren findet man in den Maßtabellen die axiale Verstellkraftrate c_s. Die Verstellkraft errechnet sich damit:

Axiale Verstellkraft F, in kN

$$(9.2) F_{\delta} = 0.001c_{\delta} \cdot \delta$$

Axiale Federrate c_s in N/mm (aus Maßtabellen der Axial-Kompensatoren) halber Gesamtweg δ in mm (bei 50 % Vorspannung)

Bei Gelenksystemen sind die Verstellkräfte nicht so einfach zu errechnen wie bei Axial-Kompensatoren. Für die Ermittlung dieser Kräfte werden üblicherweise Rechenprogramme eingesetzt (z.B. ROHR2 oder CAESAR II).

Reibkraft zwischen Rohrleitung und Auflagern

Auf die Festpunkte wirkt jeweils die gesamte Reibkraft der Rohrstrecke zwischen Kompensationssystem und Festpunkt, d.h. die Summe der Reibkräfte aller Lager.

Reibkraft F_R in kN

(9.3

$$F_{R} = \Sigma F_{I} \cdot K_{I}$$

Auflagerlast F, in kN

Widerstandsbeiwert der Lager K, :

Empirische Werte für K_L:

 Stahl / Stahl:
 0,2 - 0,5

 Stahl / PTFE:
 0,1 - 0,2

 Rollenlager:
 0,05 - 0,1

Man muss berücksichtigen, dass die Reibkraft den Festpunkt in wechselnden Richtungen beansprucht: beim Erwärmen der Leitung als Druckkraft, beim Erkalten als Zugkraft.

Durch Änderung der Anordnung des Kompensationssystems auf der Strecke zwischen den Festpunkten kann eine andere Verteilung der Reibkraftanteile auf die beiden Festpunkte erreicht werden. Wird beispielsweise das Kompensationssystem direkt an einem Festpunkt platziert, hat dieser Festpunkt (FP1) keine Reibkraft aufzunehmen: dagegen muss der andere Festpunkt (FP2) die gesamte Reibkraft auf der Strecke aufnehmen (Bild 9.5).

Wird das Kompensationssystem mittig zwischen den Festpunkten angeordnet, muss jeder Festpunkt die halbe Reibkraft der Gesamtstrecke aufnehmen (Bild 9.6).

Bild 9.5 Asymmetrische Anordnung des Kompensators. Reibkraft auf einen Festpunkt.

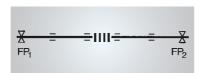


Bild 9.6 Symmetrische Anordnung des Kompensators. Reibkraft gleichmäßig verteilt.

Zentrifugalkraft

Sie wird nur an Kniefestpunkten von axial kompensierten Leitungen frei und ist im Regelfall unbedeutend klein (Bild 9.7). Nur bei schweren Medien mit hoher Strömungsgeschwindigkeit wird sich eine nennenswerte Kraft ergeben.

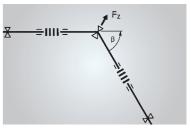


Bild 9.7 Zentrifugalkraft am Knie-Festpunkt

Zentrifugalkraft F, in kN

(9.4)

$$F_z = \frac{A \cdot \varrho \cdot v^2 \cdot \sin\beta}{10.000}$$

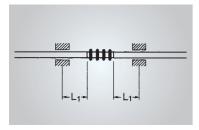
Wirksamer Querschnitt A in cm² (aus Maßtabellen der Axial-Kompensatoren) Dichte des Mediums ϱ in g/cm³ Strömungsgeschwindigkeit v in m/sec Abwinkelung der Leitung β in Grad

Sonstige anlagenbedingte Kräfte

Außer den Kräften, die direkt aus dem Einbau der Kompensatoren herrühren, müssen für die Festpunkt-Dimensionierung auch Kräfte berücksichtigt werden, die aus der Anlage oder Leitungsführung stammen oder durch Zusatzlasten verursacht werden:

- Rohrleitungs-, Medien- und Isoliergewichte
- Gewicht von Staubablagerungen innen und außen
- Kondensatgewichte
- Wind- und Schneelasten
- Kräfte aus Massenbeschleunigung bei Erdbeben
- Kräfte aufgrund von Rohrverformungen bei unvollständiger Kompensation

Werden Leitungen für gasförmige Medien einer Wasserdruckprüfung unterzogen, muss das Wassergewicht zusätzlich berücksichtigt werden.


FÜHRUNGEN

Im Bereich von Kompensatoren oder Kompensationssystemen muss den Rohrführungen besondere Aufmerksamkeit geschenkt werden. Die unterschiedlichen Anforderungen der Kompensationssysteme sind zu beachten.

Führungen bei axialer Kompensation

Grundsätzlich sind für die Dimensionierung der Lager und Lagerabstände die von der Anlage gegebenen Bedingungen zu beachten. Folgende Regeln müssen beim Einsatz von Axial-Kompensatoren eingehalten werden:

- Die erste Führung nach dem Axial-Kompensator darf höchstens 3 x DN vom Kompensator entfernt sein, d.h. L, ≈ 3 · DN (Bild 9.8)
- Der Abstand zwischen dem jeweils ersten und zweiten Lager nach dem Kompensator darf nur ca. halb so groß sein wie der normale Lagerabstand, d.h. L₂ ≈ 0.5 · L_E (Bild 9.9)
- Der normale Lagerabstand LF muss gegebenenfalls reduziert werden, wenn ein Ausknicken der Leitung zu befürchten ist (Bild 9.10)

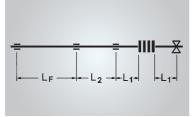


Bild 9.8 Führungslager direkt am Axial-Kompen-

Bild 9.9 Führungslager in der Leitung

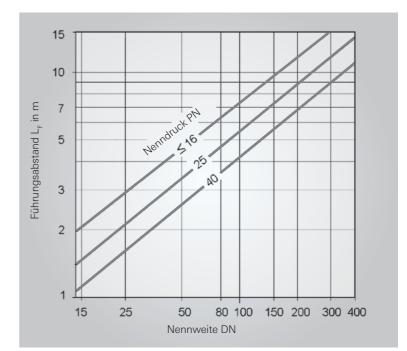


Bild 9.10 Abstände für Rohrführungen bei axialer Kompensation (Richtwerte)

09

Führungen bei lateraler Kompensation oder bei Zwei-Gelenk-Systemen

Bei lateraler Kompensation bleibt immer eine "Restdehnung", die durch Leitungsbiegung aufgenommen werden muss.

Diese Restdehnung setzt sich aus zwei Komponenten zusammen:

- Wärmedehnung der unkompensierten Strecke (mit Kompensator)
- Bogenhöhe aus der Kreisbewegung des Lateral-Kompensators bzw. der beiden Angular-Kompensatoren (Bild 9.11)

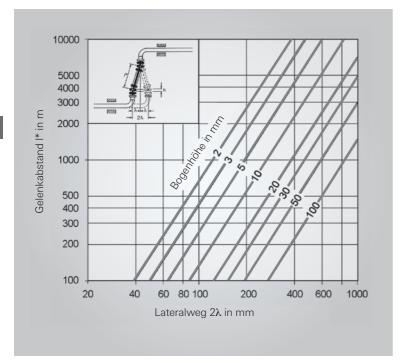


Bild 9.11 Längenänderung eines Zwei-Gelenk-Systems bei Lateralbewegung (Bogenhöhe)

Bogenhöhe h in mm

(9.5)
$$h = I^* - \sqrt{I^{*2} - \lambda^2}$$

Gelenkabstand I* in mm halber Lateralweg λ in mm

Es muss deshalb an einem Ende des Kompensators bzw. des Zwei-Gelenk-Systems eine ausreichende Bewegungsmöglichkeit geschaffen werden, da sonst Zwangskräfte auftreten (Bild 9.12).

Führung 3 muss ausreichend Spiel haben um die Restdehnung nicht zu behindern. Sie wirkt also nur als Seitenführung. Bei vertikalen Systemen kann die Seitenführung evtl. entfallen, wenn keine Seitenkräfte auftreten und Schwingungen ausgeschlossen sind. Führungen 2 und 4 müssen die Biegekräfte der Rohrleitung aufnehmen können.

Bei langen Zwischenrohren horizontaler Systeme muss das Zwischenrohr aufgelagert werden, da sonst die Seitenkräfte auf die Kompensatoren zu groß werden (Bild 9.13).

Die Gleitebene der Auflager muss immer senkrecht zu den Drehachsen der Kompensatoren stehen.

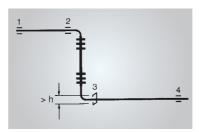


Bild 9.12 Vertikales Zwei-Gelenk-System

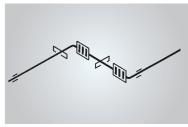


Bild 9.13 Horizontales Gelenk-System auf Gleitführungen

 Bei allseitig beweglichen oder vertikalen Systemen und großen Lasten sind federnde Aufhängungen bzw. Auflager vorzusehen (Bilder 9.14 und 9.15).

Es muss beachtet werden, dass durch die Rohrbiegungen aus Restdehnungen auch Zusatzkräfte auf die Verankerung wirken. Bei Vakuum oder bei unüblicher Vorspannung können die Biegekräfte die Verankerung so stark zusätzlich belasten, dass eine Verstärkung erforderlich wird. In diesem Fall sind die Zusatzkräfte bei Anfragen und Aufträgen zu nennen.

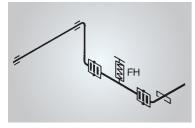


Bild 9.14 Horizontales Zwei-Gelenk-System mit abgehängtem Zwischenrohr

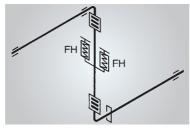


Bild 9.15 Vertikales Zwei-Gelenk-System mit abgehängtem Zwischenrohr

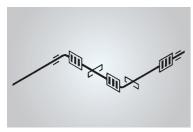


Bild 9.16 Ebenes Drei-Gelenk-System mit Auflagerung der beiden Zwischenrohre

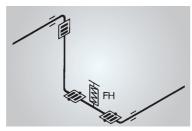


Bild 9.17 Allseitig bewegliches Drei-Gelenk-System mit abgehängtem Zwischenrohr

Führungen bei Drei-Gelenk-Systemen

Die Führungen von Drei-Gelenk-Systemen werden nur unwesentlich stärker beansprucht als normale Rohrführungen. Es wirken zusätzlich nur die Verstellkräfte des Systems, die jedoch im Normalfall klein sind.

Ausreichende Aufmerksamkeit ist der Gewichtsaufnahme der Rohrstücke zwischen den Angular-Kompensatoren zu schenken. Diese sind häufig sehr lang und ihr Gewicht kann die Kompensatoren unzulässig belasten.

Nachstehende Beispiele zeigen Lastabtragung durch Auflager oder federnde Aufhängungen.

Wird ein ebenes Drei-Gelenk-System unter einem Neigungswinkel α installiert (Bild 9.19), so ist darauf zu achten, dass die Bolzenachsen immer parallel zueinander und senkrecht zur Auflageebene stehen, d.h. die Achsen der Kompensatoren müssen beim Einbau um den Winkel α geneigt werden.

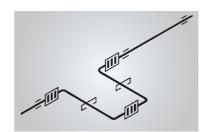
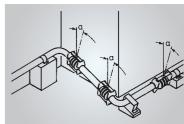
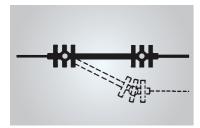
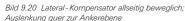


Bild 9.18 Drei-Gelenk in U-Anordnung mit im Schwerpunkt aufgelagerten Rohrschenkeln




Bild 9.19 Geneigtes Drei-Gelenk-System


EINBAUHINWEISE

Ankerlage von Lateral-Kompensatoren

Nahezu alle Lateral-Kompensatoren haben zwei Zuganker, so dass diese Kompensatoren in einer Ebene zusätzlich angular beweglich sind (Bild 9.20). Das gilt auch für allseitig bewegliche Lateral-Kompensatoren. In der zweiten Ebene können die Lateral-Kompensatoren nicht abgewinkelt werden, da in dieser Ebene die Verankerung wie ein Parallelogramm arbeitet (Bild 9.21).

Wie bereits im Teil "Führungen" dieses Kapitels erwähnt, tritt beim Einsatz von Lateral-Kompensatoren (Zwei-Gelenk) immer eine unkompensierte Bewegungskomponente auf, die durch Leitungsbiegung aufgenommen werden muss. Je nach Ankerlage ergeben sich unterschiedliche Biegefälle.

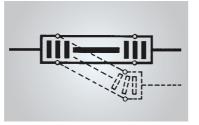


Bild 9.21 Lateral - Kompensator allseitig beweglich, Auslenkung in Ankerebene

Auslenkung quer zur Ankerebene

Es ergibt sich angenähert der Biegefall eines einseitig eingespannten Trägers (Bilder 9.22 und 9.24), da das geringe Verstellmoment des Kompensators vernachlässigt werden kann. Die freie Biegelänge kann damit relativ kurz gehalten werden, die zusätzlichen Belastungen auf den Kompensator bleiben gering.

Auslenkung in Ankerebene

Es ergibt sich angenähert der Biegefall eines beidseitig eingespannten Trägers, da die Verankerung ein Moment überträgt, das nicht vernachlässigt werden kann (Bilder 9.23 und 9.25). Die nun entstehende S-förmige Biegung der Rohrleitung erfordert eine wesentlich größere freie Länge als im ersten Fall, außerdem werden erheblich größere Momente und Kräfte erzeugt, die auch die Verankerung des Kompensators unzulässig belasten können.

Gegebenenfalls muss anhand der zusätzlichen Kräfte und Momente die Tragfähigkeit der Verankerung überprüft werden.

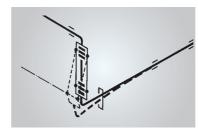


Bild 9.22

Bild 9.23

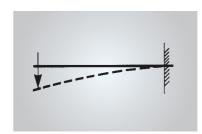


Bild 9.24

Bild 9.25

Winkelanordnung von zwei Lateral-Kompensatoren

Bei kleineren allseitigen Lateralbewegungen oder Schwingungen an Maschinenanschlüssen werden häufig zwei kurze Lateral-Kompensatoren über Eck eingesetzt (Bild 9.26).

In diesem Fall ist es wichtig, dass die Zugankerpaare der beiden Kompensatoren um 90° zueinander versetzt angeordnet werden. Damit wird verhindert, dass der verbindende Rohrbogen unzulässige Kippbewegungen ausführen kann, die zu einem vorzeitigen Ausfall der Kompensatoren führen würden.

Kombinierter Einbau von Lateral- und Angular-Kompensatoren als Drei-Gelenk-System

Da ein Lateral-Kompensator kinematisch die gleichen Eigenschaften hat wie zwei Angular-Kompensatoren mit Zwischenrohr, ist es auch möglich, ein Drei-Gelenk-System mit einem Lateral- und einem Angular-Kompensator zu bauen.

Bei engen Gelenk-Systemen, besonders wenn es sich um dreidimensionale Systeme handelt, kann der kombinierte Einsatz von Angular- und Lateral-Kompensatoren preisliche Vorteile bieten. Bei großen Gelenkabständen (> 5xDN) sind im Regelfall reine Angular-Systeme günstiger.

Die Anker des Lateral-Kompensators müssen im System so angeordnet werden, dass eine Abwinkelung zum Angular-Kompensator hin möglich ist (Bilder 9.27 und 9.28). Für die Querbewegungen im räumlichen System arbeitet der Lateral-Kompensator als Parallelogramm.

Es sollten dafür nur Lateral-Kompensatoren mit Bolzengelenken, die genau über der Balgmitte liegen, verwendet werden. Bei Lateral-Kompensatoren mit Zugstangen oder mit Gelenken, die außerhalb der Balgmitte liegen, gestaltet sich die Berechnung der Biegewinkel, der Kräfte und Momente und der Stabilität des Systems erheblich schwieriger.

In jedem Fall muss ein derartiges System vom Kompensator-Hersteller auf seine volle Funktionsfähigkeit hin geprüft werden, auch wenn es nach ersten überschlägigen Berechnungen zunächst problemlos erscheinen mag.

Lateral-Kompensatoren mit mehr als zwei Zugankern können innerhalb eines Drei-Gelenk-Systems nicht eingesetzt werden.

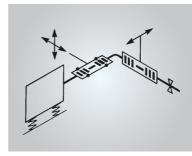


Bild 9.26 Lateral-Kompensatoren in Winkelanordnung an schwingendem Aggregat

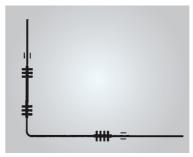


Bild 9.27 Ebenes Drei-Gelenk-System mit Lateralund Angular-Kompensator

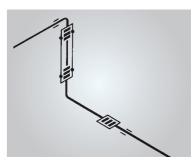


Bild 9.28 Dreidimensionales Drei-Gelenk-System mit Lateral- und Angular-Kompensator

Einbau von eckentlasteten Kompensatoren

Eckentlastete Kompensatoren sind verankerte Kompensatoren, bei denen die durch Innendruck entstehende axiale Druckkraft nicht frei wird.

Es können gleichzeitig axiale und laterale Bewegungen aufgenommen werden. Mit Sonderausführungen kann man zusätzlich allseitig angulare Beweglichkeit erreichen (siehe auch Kapitel 12, "Axiale Druckkraft und entlastete Konstruktionen").

Ein weiterer Vorteil dieser Bauart liegt in günstigen Abmessungen. Man kann damit auf engstem Raum komplexe Bewegungsprobleme lösen und dabei auch Forderungen nach geringen Anschlusskräften erfüllen.

Daraus werden die hauptsächlichen Anwendungsfälle erkennbar, nämlich Anschlüsse von Pumpen, Verdichtern und Turbinen unter räumlich beengten Verhältnissen.

Eckentlastete Kompensatoren werden üblicherweise für die Betriebs- und Einbaubedingungen besonders ausgelegt. Die nachfolgenden Einbaubeispiele lassen die besonderen Vorteile dieser Bauart erkennen und geben Hinweise auf zu beachtende Einbaukriterien.

Werden **eckentlastete Kompensatoren** als **Pumpenanschlüsse** eingesetzt (Bild 9.29), ergeben sich nicht nur spannungsarme, allseitig bewegliche Maschinenanschlüsse bei geringem Platzbedarf, es wird auch eine Schwingungsentkoppelung erreicht mit kleinen beweglichen Massen.

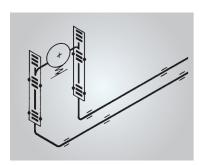


Bild 9.29 Eckentlastete Kompensatoren als Pumpenanschlüsse

Ein *eckentlasteter Kompensator* zwischen *Turbine und Kondensator* kann das Anschlussproblem bei nur geringem Abstand in vertikaler Richtung lösen (Bild 9.30).

Der Anschluss auf der Turbinenseite kann auch mit rechteckigem Querschnitt ausgeführt werden.

Ein eckentlasteter Kompensator zur Aufnahme großer Dehnungen kann in einer langen Streckenleitung eingesetzt werden (Bild 9.31).

Die Dehnungsaufnahme erfolgt mit einem sehr kleinen Leitungsversprung. Anders als beim Drei-Gelenk-System ist keine seitliche Auslenkung zu berücksichtigen. Lediglich in den Führungen direkt an den Kompensatoren kann für die Wärmedehnung aus dem Achsabstand der beiden Leistungsstränge, zur Entlastung der Bälge ein geringes Spiel gelassen werden.

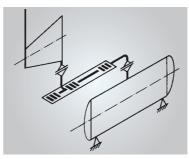


Bild 9.30 Eckentlasteter Kompensator zwischen Turbine und Kondensator

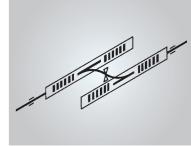


Bild 9.31 Eckentlasteter Axial-Kompensator in einer langen Streckenleitung zur Aufnahme großer Dehnungen

VORSPANNUNG

Um die volle Dehnungsfähigkeit eines Kompensators zu nutzen, ist oftmals eine Vorspannung erforderlich. Jeder Kompensator kann von der Neutralstellung aus in beide Richtungen gleich große Bewegungen ausführen. Die optimale Vorspannung wäre demnach 50 % der Gesamtbewegung.

Bei Axial-, Lateral- und Angular-Kompensatoren im Zwei-Gelenk-System entspricht die anteilige Vorspannung der Leitungsdehnung auch der Vorspannung des Kompensators selbst.

Bei Drei-Gelenk-Systemen mit Angular-Kompensatoren ist dies meistens auch der Fall. Bei ungünstigen Systemen sollte jedoch die Leitungsvorspannung besonders errechnet werden, da sie nicht mehr proportional zur Winkelauslenkung der einzelnen Angular-Kompensatoren sein muss.

Da die direkte Vorspannung eines Kompensators bei der Montage schwierig ist, empfiehlt es sich, die Kompensatoren in Neutralstellung zu montieren und die Vorspannung des gesamten Leitungsstranges später vor Arretierung der Festpunkte durch Verschieben oder danach über ein herausgeschnittenes Passstück vorzunehmen.

Zu beachten ist, dass eine Vorspannung nicht immer rein elastisch ist, d.h. dass sich der Kompensator nach Lösen der Vorspannung nicht zwingend in die Nennlänge zurückbewegt.

Axial-Kompensatoren

Der Kompensator wird auf der einen Seite mit der Rohrleitung verschweißt (Bild 9.35/1). Dieses Leitungsstück ist bereits fixiert, so dass später der Kompensator vorgespannt werden kann ohne dass es sich verschiebt. Das weiterführende Rohrleitungsstück liegt lose in den Führungen (Bild 9.35/3). Die weiterführende Rohrleitung wird jetzt auf Anstoß herangeholt (Bild 9.36/4) und mit dem Kompensator verschweißt (Bild 9.36/5).

Nach dem Verschweißen wird das lose Rohr mit einer Winde oder einer sonstigen geeigneten Vorrichtung um den Vorspannwert vom Kompensator axial weggezogen (Bild 9.37/6). Dabei ist darauf zu achten, dass der Kompensator nicht überreckt wird (Bild 9.37/7). Jetzt wird auch dieses Rohrstück befestigt, damit der Kompensator nach Freigabe durch die Vorspann-Vorrichtung das Rohr nicht mehr zu sich heranzieht (Bild 9.37/8).

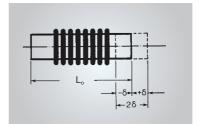


Bild 9.32 Axial-Kompensator mit Baulänge L_o (Neutralstellung)

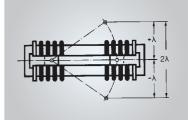


Bild 9.33 Lateral-Kompensator

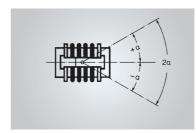
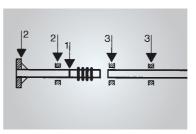
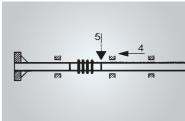




Bild 9.34 Angular-Kompensator

Rild 9 36

Bei Axialkompensatoren besteht auch die Möglichkeit, die Kompensatoren gleich in vorgespanntem Zustand zu bestellen. Es ist dann sicher gestellt, dass das richtige Vorspannmaß auf der Baustelle eingehalten wird. Selbstverständlich kann auf eine Vorspannung verzichtet werden, wenn die aufzunehmenden Dehnungen so klein sind, dass die zulässige Auslenkung des Kompensator aus der Neutralstellung nach einer Seite nicht überschritten wird.

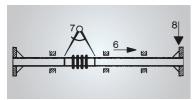
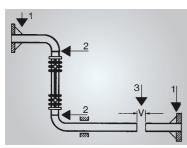
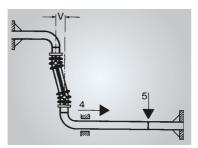



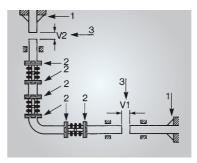
Bild 9.37

Lateral-Kompensatoren

Die Endfestpunkte sind beidseitig arretiert (Bild 9.38/1). Der Kompensator wird in

neutraler Lage eingeschweißt (Bild 9.38/2). Die weiterführende Rohrleitung liegt um das Vorspannmaß V auf Distanz (Bild 9.38/3). Das muss durch ein herausnehmbares Passstück oder durch Herausschneiden eines Rohrstückes der Länge V gewährleistet sein. Der Kompensator wird um den Vorspannwert aus der Neutralstellung herausgezogen oder -gedrückt (Bild 9.39/4) und dann mit dem weiterführenden Rohrstrang fest verbunden (Bild 9.39/5). Bei leichten Kompensatoren kann dies von Hand geschehen, ggf. ist ein geeignetes Hilfsgerät erforderlich.




Bild 9.38 Bild 9.39

Angular-Kompensatoren

Die beiderseitigen Endfestpunkte werden fixiert (Bild 9.40/1). Die Angular-Kompensatoren werden in Neutralstellung, also senkrecht zu den ankommenden Rohrsträngen eingeschweißt oder eingeflanscht (Bild 9.40/2).

Die weiterführenden Leitungen liegen um die jeweilige Vorspannung auf Distanz oder ein der Vorspannung entsprechendes Rohrstück wird herausgeschnitten (Bild 9.40/3).

Die jetzt bereits gemeinsam arbeitenden Kompensatoren werden um den Vorspannwert aus der Neutralstellung herausgezogen oder -gedrückt (Bild 9.41/4) und dann mit den weiterführenden Rohrsträngen fest verbunden (Bild 9.41/5). Bei leichten Kompensatoren kann dies von Hand geschehen, ggf. ist ein geeignetes Hilfsgerät erforderlich.

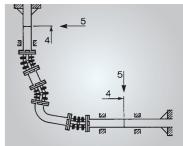
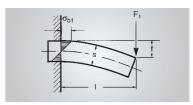



Bild 9.40

Bild 9.41


VIELWANDIGKEIT ALS PRINZIP

Physikalische Zusammenhänge

Schon aus der Betrachtung des einfachen Biegebalkens (Bild 10.1) ist erkennbar, dass bei gleicher Durchbiegung und sonst gleichen Abmessungen mit halbierter Trägerhöhe die Biegespannung ebenfalls halbiert wird und die Verstellkraft des zweischichtigen Biegebalkens nur noch ein Viertel des ursprünglichen Wertes beträgt.

In den Wellen eines Metallbalges herrschen im Prinzip ähnliche Verhältnisse. Die nachstehenden Beziehungen zeigen, wie Beweglichkeit, Druckfestigkeit und Verstellkraft von den wesentlichen geometrischen Parametern der Welle in erster Näherung abhängen (siehe auch Kapitel 11 "Auslegung der Bälge").

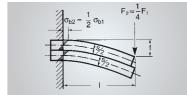


Bild 10.1 Einschichtiger und zweischichtiger Biegebalken mit Spannungsprofil

Druck

(10.1)
$$p \sim n_p \left(\frac{e_p}{W}\right)^2$$

Axiale Bewegungsaufnahme

(10.2)
$$x \sim \frac{w^2}{e_p}$$

Axiale Federrate

(10.3)
$$k \sim n_p \left(\frac{e_p}{W}\right)^3$$

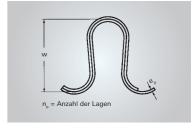


Bild 10.2 Physikalische Beziehungen für die Balgwelle (Näherung)

In den Beziehungen ist die Lagenzahl enthalten, wodurch erkennbar wird, wie günstig sich eine größere Lagenzahl in Bezug auf hohe Druckfestigkeit bei gleichzeitig guter Beweglichkeit auswirkt: während eine steigende Lagenzahl die Druckfestigkeit linear erhöht, bleibt die Beweglichkeit davon unabhängig.

In der Realität sind die Verhältnisse zwar wesentlich komplexer und weniger leicht überschaubar, deutlich erkennbar ist aber die Möglichkeit, den vielwandigen Kompensator den geforderten Einsatzbedingungen optimal anzupassen.

Balgaufbau

Der vielwandige Balg wird aus einem viellagigen Zylinderpaket hergestellt. Durch Herauspressen von ringförmigen Wellen wird das viellagige Zylinderpaket zum vielwandigen Balg umgeformt (Bild 10.3) Die dabei auftretende plastische Dehnung des Materials ist gleichzeitig eine sichere Prüfung für die Güte der Zylindernaht.

Die einzelnen Zylinder können übrigens aus unterschiedlichem Material bestehen, was wirtschaftliche Kombinationsmöglichkeiten eröffnet, z. B. um Korrosionsangriffen zu begegnen.

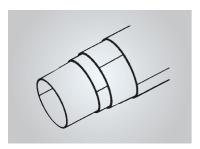


Bild 10.3 Vielwandiges Zylinderpaket

Werkstoffqualität

Die Verwendung von kaltgewalztem Bandmaterial in nur wenigen Dicken – variiert wird hauptsächlich die Lagenzahl – erlaubt es, Material in großen Mengen zu beschaffen und dabei Einfluss zu nehmen auf die für die Balgherstellung besonders wichtigen Eigenschaften des Vormaterials wie Maßtoleranzen, Oberflächenbeschaffenheit, Festigkeitswerte und Verformbarkeit. In unseren Bestell- und Abnahmevorschriften sind die gewünschten Eigenschaften und Daten festgeschrieben. Unser Bandmaterial ist mit amtlichem Abnahmeprüfzeugnis nach EN 10204-3.1/3.2 belegt. Die wichtigsten Materialqualitäten sind ständig lagervorrätig.

Technische Eigenschaften

Durch den Aufbau des Balges aus vielen Einzellagen ergeben sich für die Kompensatoren besonders günstige Eigenschaften:

- Beherrschung hoher Drücke bei gleichzeitig sehr guter Beweglichkeit
- Große Bewegungsaufnahme bei kleinen Baulängen und garantierter Lastspielzahl (normalerweise 1000 Lastspiele)
- Geringe Verstellkräfte im Verhältnis zu anderen Ausführungen
- Kleine Balgaußendurchmesser und daraus resultierende kleine wirksame Querschnitte für eine geringere Festpunktbelastung
- Hohe Berstdrücke mindestens das Dreifache des Nenndruckes

NUTZEN UND SICHERHEIT VIELWANDIGER KOMPENSATOREN

Wirtschaftlicher Nutzen

Die große Bewegungsaufnahme vielwandiger HYDRA Kompensatoren bewirkt, dass für die nur kompensierenden Bewegungen, wie Wärmedehnungen, *nur wenige Kompensatoren erforderlich* sind und daraus entsprechend geringe Aufwendungen, z.B. für weniger Schachtbauwerke, folgen.

Die kleineren Abmessungen der vielwandigen Bälge führen zu kurzen Baulängen der Kompensatoren und zu geringer Ausladung der Verankerung von Gelenk-Kompensatoren oder auch zu kleinen Außendurchmessern von evtl. benötigten äußeren Schutzrohren. Dadurch lassen sich *Kosten bei den Schachtbauwerken einsparen*, weil diese selbst auch mit viel kleineren Abmessungen auskommen.

Die geringeren Verstellkräfte der vielwandigen HYDRA Kompensatoren reduzieren den Aufwand für Festpunkte und erlauben eine günstige kostensparende Kompensation auf kleinstem Raum, z.B. Gelenksysteme mit kleinstmöglichen Schenkellängen.

Bei richtiger Planung und vorschriftsmäßigem Einbau halten vielwandige HYDRA Kompensatoren Kräfte und Momente von Maschinenanschlüssen fern und dämpfen Schwingungen. Sie helfen damit einen störungsfreien Betrieb aufrechtzuerhalten und *Reparaturkosten einzusparen*.

Gegen Korrosionsgefahr lassen sich unterschiedliche Materialien als Balgwerkstoffe einsetzen, solange sie genügend verformbar sind – besonders wirtschaftlich ist es, nur die vom aggressiven Medium berührte Lage aus dem korrosionsbeständigen, meist sehr teuren Material zu wählen, während die restlichen Lagen aus dem standardmäßig verwendeten Edelstahl 1.4541 bestehen dürfen. Voraussetzung dafür ist, dass die verschiedenen Balgwerkstoffe miteinander und mit den Anschlussteilen verschweißbar sind, oder dass Bördelflansche verwendet werden können

Sicherheitsprinzip

Neben der Sicherheit, die zuverlässige Auslegung und gewissenhafte Herstellung dem Anwender von Kompensatoren garantieren können, bieten vielwandige HYDRA Kompensatoren ein weiteres standardmäßig vorgesehenes bemerkenswertes Sicherheits-Plus: die *Kontrollbohrung zur Leckanzeige* (Bild 10.4).

Sollte die mediumberührte Lage des vielwandigen Kompensators undicht werden, beispielsweise durch Korrosion, dringt ein schwacher Strom des Fördermediums durch die Lagenzwischenräume nach außen und zeigt über die "Kontrollbohrungen", die an den Balgborden (durch Ringe abgedeckt) angebracht sind, die beginnende Schädigung durch eine schwache Leckage an. Druckfestigkeit und Funktion des Kompensators bleiben in einem solchen Falle noch längere Zeit – Wochen oder Monate – erhalten! Ein sofortiger Austausch ist daher nicht erforderlich. Er kann zu einem späteren, für den Betreiber günstigen Zeitpunkt vorgenommen werden. Ein Ersatzkompensator kann mit normaler Lieferzeit – ohne Sonderaktionen – beschafft werden.

Lagerhaltung von Reservekompensatoren ist überflüssig.

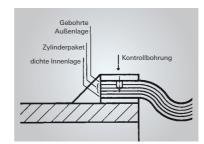


Bild 10.4 Schweißnaht und Kontrollbohrung

Aufgrund unserer jahrelang gemachten Erfahrungen ist ein spontanes Bersten des mehrwandigen HYDRA Balges unter keinen Umständen möglich.

Permanente Lecküberwachung

Beim Einsatz in Anlagen mit toxischen, brennbaren, explosiven oder sonstigen kritischen Medien können vielwandige WItzenmann-Kompensatoren kontinuierlich auf Dichtheit überwacht werden, ohne die Gefahr, dass das kritische Medium im Schadensfalle austritt.

Dazu wird z. B. eine Lecküberwachung über ein am Balgbord von außen bis auf die innerste Lage eingeschweißtes Überwachungsrohr realisiert. An das Überwachungsrohr kann ein Messgerät angebracht werden. (Bild 10.5). Das Messgerät gibt bei Druckanstieg Alarm und zeigt eine beginnende Schädigung der Innenlage damit gefahrlos an. Selbst größere Rohrsysteme, wie Gasnetze, lassen sich damit vollständig, sicher und kostengünstig überwachen.

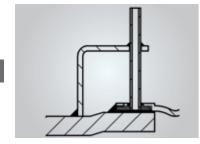


Bild 10.5 Lecküberwachung

Schalldämmung

Bedingt durch die gegenseitige Beeinflussung der Lagen durch Reibeffekte weisen vielwandige Bälge bei Bewegung eine Hysterese auf (Bild 10.6).

Die durch den Energieverzehr bedinge Dämpfung wirkt sich bei der Isolierung von Körperschall sehr positiv aus. So können vielwandige Bälge, ähnlich wie Gummielemente, Körperschall bis zu 20 dB reduzieren.

Vielwandige HYDRA Kompensatoren haben sich in der praktischen Anwendung – insbesondere im Bereich höherer Drücke – Dank ihrer hervorragenden Eigenschaften seit Jahren als gute und häufig einzig sinnvolle Lösung erwiesen.

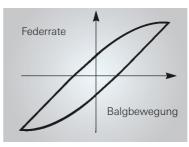
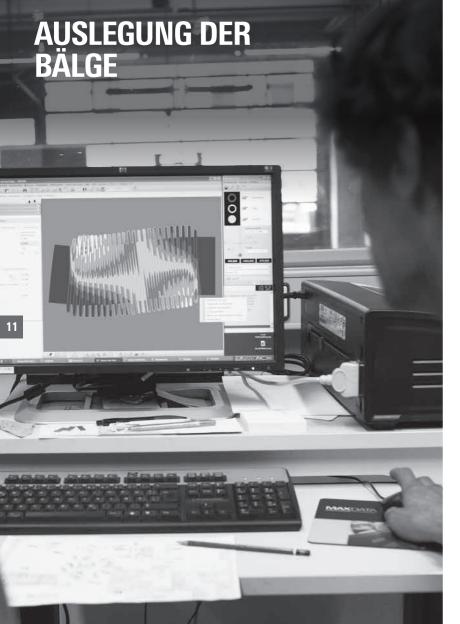



Bild 10.6 Hystereseschleife bei überelastischer Wechselbeanspruchung

Problemstellung

Beim gewellten Metallbalg sind zwei gegenläufige Anforderungen, nämlich Druckfestigkeit einerseits und Flexibilität bezüglich relativ großer, wechselnder Verformungen andererseits, mit nahezu gleicher Priorität gleichzeitig zu erfüllen. Das unterscheidet den Metallbalg auch rechentechnisch von anderen Druck tragenden Bauteilen, wie Behälter und Rohre, bei denen die Druckfestigkeit wesentlich ist, während evtl. aufgezwungene wechselnde Belastungen meist eine untergeordnete Rolle spielen und als Zusatzbelastungen nur näherungsweise berechnet werden.

Bei der Auslegung des Kompensatorbalges ist demgegenüber das Ziel, eine Formgebung und Dimensionierung zu finden, die beide Anforderungen technisch und wirtschaftlich optimal erfüllt.

Nach heutigem Kenntnisstand – aus jahrzehntelanger Erfahrung gewonnen – bietet das Bauprinzip der mehr- und vielwandigen Kompensatoren die günstigsten Voraussetzungen für die gesuchte, optimale Lösung.

Demgegenüber wird durch die Einflüsse der Viellagigkeit die ohnehin schwierige Berechnung der lyraförmigen Balgwelle als doppelt gekrümmte Schale weiter erschwert; eine zuverlässige Methode zur Auslegung und Berechnung von Kompensatoren ist aber unverzichtbar, da die Sicherheit von Anlagen und deren Betriebspersonal davon abhängen kann.

Wir haben daher ein eigenständiges Berechnungsverfahren entwickelt. Dieses Berechnungsverfahren orientiert sich im Wesentlichen an EN 13445-3 und EN 14917. In dieses Berechnungsverfahren wurden Ergänzungen auf der Grundlage von betrieblichen Erfahrungen und Prüfergebnissen eingearbeitet. Das Verfahren wurde von einer unabhängigen Prüfstelle (TÜV) überprüft; der Nachweis eines gleichwertigen Gesamtsicherheitsniveaus im Sinne von Richtlinie 2014/68/EU wurde erbracht.

Theoretische Basis

Das in den Normen (EN 13445, EN 14917,...) und Regelwerken (EJMA, ASME,...) angewandte Berechnungsverfahren basiert auf der von Anderson für die Atomic Energy Commission USA entwickelte Berechnungsmethode, die 1964/65 veröffentlicht wurde. Bei dieser Methode wird als vereinfachendes Ersatzmodell für eine halbe Balgwelle ein ebener, ungekrümmter Plattenstreifen mit der Höhe w gewählt, die der Wellenhöhe entspricht (Bild 11.1). Für dieses Ersatzmodell werden die zur Berechnung benötigten Gleichungen aufgestellt und anschließend über Faktoren korrigiert, die den Einfluss der realen Schalenform der Balgwelle berücksichtigen.

Die Korrekturfaktoren stellt Anderson in Diagrammform zur Verfügung; sie sind auf analytischem Wege über Schalengleichungen ermittelt und berücksichtigen die Ähnlichkeitsgesetze. Die Methode liefert entsprechend dem vereinfachten, aber eleganten Ansatz übersichtliche Gleichungen (Bild 11.1).

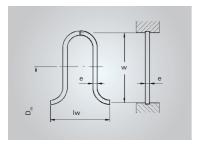


Bild 11.1 Balgwelle und Ersatzmodell für Berechnung nach Anderson

Die Gleichungen sind grundsätzlich als Basisgleichungen für die Balgberechnung anwendbar, gelten aber streng genommen nur für einwandige Bälge mit U-förmigen Wellen (parallele Flanken) und mit konstanter Wanddicke über die gesamte Welle. Bälge mit mehr als einer Lage sind näherungsweise mit diesen Gleichungen zu berechnen, wenn die Lagenzahl gering – zwei bis fünf – und die Gesamtwanddicke klein ist zur gegebenen Wellenhöhe.

Das Witzenmann-Verfahren

Die wesentlichen, von uns eingeführten Ergänzungen und Erweiterungen der Berechnungsmethode nach EN 13445 sind:

- Aufhebung der Lagenzahlgrenze von fünf Lagen durch Einführung eines Lagenkorrekturfaktors
- Modifizierung der Design-Lebensdauerkurve auf Basis von Testergebnissen
- Modifizierung der Formel für die Säulenstabilität unter Berücksichtigung der Bewegung

Lebensdauer

Auf der Basis von Versuchsergebnissen und unter Berücksichtigung des Lagenkorrekturfaktors wurde eine herstellerspezifische Ermüdungskurve ermittelt. Die Bestimmung der speziellen Kurve erfolgte in Anlehnung an die EN 13445-3 und EN 14917. Ausgehend von einer Ausgleichskurve wird eine Lebensdauerkurve bestimmt, die mindestens 98% aller Messergebnisse abdeckt. Sie wird als "Designkurve" bezeichnet und bildet die Basis für die Bauteilauslegung (Bild 11.2).

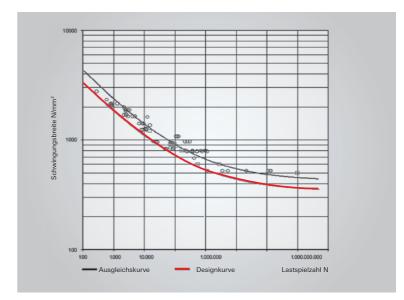


Bild 11.2 Ermittlung der Lebensdauerkurve

Stabilität

Instabilität kann die Funktion des Balges (Druckfestigkeit, Lebensdauer) erheblich vermindern. Daher ist eine zuverlässige Berechnung des kritischen Innendruckes von besonderer Wichtigkeit.

Es gibt zwei Arten der Instabilität:

Die Säuleninstabilität, die nur für innendruckbelastete Bälge zutrifft, wird als starke seitliche Verlagerung der Balg-Mittellinie definiert und tritt im Allgemeinen bei Bälgen mit einem relativ großen Verhältnis von Länge zu Durchmesser auf (Bild 11.3).

Für die Ermittlung des kritischen Druckes haben wir neben dem statischen Druck auch Einfluss der Bewegung berücksichtigt.

Die Welleninstabilität, auch lokale Instabilität bezeichnet, tritt im Allgemeinen bei relativ kleinen Verhältnissen von Länge zu Durchmesser auf und ist als Verschieben oder Verdrehen der Ebene einer oder mehrerer Wellen zu der geraden Balgachse definiert (Bild 11.4).

Bild 11.4

Rild 11 3

Verstellrate des Balges

Die Verstellrate eines Balges ist keine eindeutige, lineare Größe. Sie ist von der Geometrie (im wesentlichen Wanddicke und Wellenhöhe) und dem Werkstoff des Balges abhängig.

Die Steifigkeit des Balges im elastischen Bereich kann mit ausreichender Genauigkeit berechnet werden (siehe EN 13445-3). Sie gilt streng genommen nur für kleine axiale Verschiebungen.

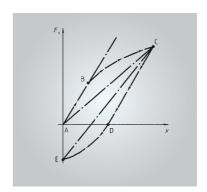
Steigt die axiale Bewegung weiter (plastischer Bereich; Linie BC in Bild 11.5) weicht sie von dem linearen Verlauf ab.

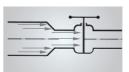
Mit großem Aufwand ist es möglich, die reale Verstellrate durch Messungen zu ermitteln.

Deswegen haben wir – durch Auswertung der internen Messungen in Verbindung mit theoretischen Modellen – eine Gleichung für die Verstellkraft gefunden. Sie erlaubt, mit guter Übereinstimmung mit den Messergebnissen, die Verstellkraft in Abhängigkeit von der axialen Verschiebung zu berechnen.

Alle Zusatzeinflüsse wie Druckeinfluss, Reibung zwischen den Lagen, teilplastische Verformung wurden in der Gleichung berücksichtigt.

Für die praktische Anwendung bei großen Bewegungen, hohen Drücken oder hohen Temperaturen wird empfohlen, die tatsächliche Verstellrate (AC) für die Berechnung zugrunde zu legen. Diese berechnen wir Ihnen gerne individuell für Ihren Anwendungsfall.




Bild 11.5

In einer druckführenden Rohrleitung herrscht normalerweise eine Längskraft der Größe $F_L = a \cdot p$, wobei a der Rohrquerschnitt und p die Druckdifferenz (innen / außen) ist. Die Druckkraft entsteht durch die axialen Druckkomponenten, die am Ende einer Rohrstrecke auf eine projizierte Abschlussfläche wirken (Bild 12.1).

Beim Einsatz eines flexiblen, unverankerten Axial-Kompensators wird die Druckkraft freigesetzt, d.h. in der Rohrleitung fehlt jetzt die Längskraft als Reaktion. Die Druckkraft muss an beiden Enden der Rohrstrecke durch Festpunkte aufgefangen werden.

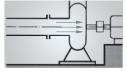


Bild 12.1 Rohrbogen - Schieber - Pumpe

Da der Axial-Kompensator normalerweise einen mittleren Balgdurchmesser hat, der größer ist als der Rohrinnendurchmesser, wird die bei der Auslegung der Festpunkte zu berücksichtigende Kraft noch etwas größer (Bild 12.2).

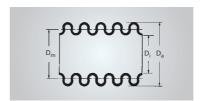


Bild 12.2 Durchmesser am Bala

12

AXIALE DRUCKKRAFT

$$(12.1) F_p = A \cdot p$$

A = wirksamer Balgquerschnitt p = Überdruck

Die axiale Druckkraft erhält man in kN, wenn A in cm² und p in kN/cm² (1 kN/cm² = 100 bar) eingesetzt wird (siehe auch Kapitel 4 "Kompensationsarten", Bild 4.3). Der wirksame Balgquerschnitt, der in den Maßtabellen der Axial-Kompensatoren angegeben ist, errechnet sich mit guter Näherung aus dem mittleren Balgdurchmesser.

Wirksamer Balgquerschnitt

(12.2)
$$A = \frac{\pi}{4} D_{m}^{2}$$

Mittlerer Balgdurchmesser

(12.3)
$$D_m = \frac{1}{2} (D_i + D_a)$$

Für die Festpunktauslegung ist der größte auftretende Überdruck einzusetzen, meist der Prüfdruck

Aus der Differenz der Querschnitte von Balg und Rohr, Δ A = A – a, ergibt sich ein Kraftanteil, der als Druck-Längskraft vom Kompensator bis zum Festpunkt durch das Rohr geleitet wird (Bild 12.3).

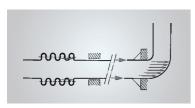
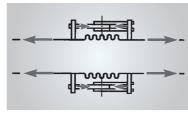



Bild 12.3 Axiale Druckkraft bei axialer Kompensation

Verankerte Kompensatoren

Kompensatoren erhalten Verankerungen als kugelig gelagerte Zugstangen oder Gelenkteile, um die Längskraft über den Kompensator von einem Rohranschluss zum anderen zu leiten. Damit verhält sich die Rohrleitung mit Gelenk-Kompensator in Bezug auf axiale Druckkraft und Längskraft wie eine durchgehende Rohrleitung. Festpunkte oder Führungen werden nicht zusätzlich durch die axiale Druckkraft belastet

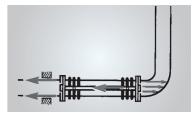


Bild 12.4 Axialkraft am Angular-Kompensator

Bild 12.5 Axialkraft am Lateral-Kompensator

Stutzenbelastung

(HYDRA®)

Auf Maschinen und Aggregaten wirkt die Druckkraft über die Anschlussstutzen, wobei sich abhängig von der Art des Leitungsanschlusses unterschiedliche Stutzenbelastungen daraus ergeben. **Sonstige Belastungen werden hier nicht betrachtet**.

40

Starrer Leitungsanschluss (Bild 12.6)

- Längskraft gleich der Druckkraft zieht am Stutzen (bei innerem Überdruck)
- keine Fundamentbelastung

Anschluss mit Gelenk-Kompensator oder druckentlastetem Kompensator (Bild 12.7)

- Längskraft gleich der Druckkraft zieht am Stutzen (bei innerem Überdruck)
- keine Fundamentbelastung

Anschluss mit Axial-Kompensator (Bild 12.8)

- Stutzen praktisch kräftefrei
- Druckkraft wird von den Auflagern aufgenommen

(12.4)
$$Q_{A} = Q_{B} = \frac{F_{p}}{2}$$
$$F_{A} = -F_{B} = F_{p} \frac{h}{c}$$

Die Problematik, die entsteht, wenn elastisch gelagerte Aggregate über Axial-Kompensatoren angeschlossen werden sollen, ist erkennbar: das Aggregat würde sich unter der Krafteinwirkung neigen (siehe auch Kapitel 13).

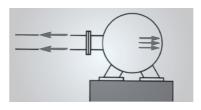


Bild 12.6 Axialkraft an einem Aggregat mit starrem Leitungsanschluss

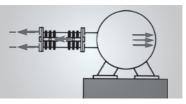


Bild 12.7 Axialkraft an einem Aggregat mit Lateral-Kompensator

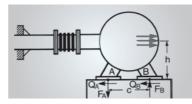


Bild 12.8 Axialkraft an einem Aggregat mit Axial-Kompensator

DRUCKENTLASTETE KONSTRUKTIONEN

Mit steigenden Betriebsdrücken und größer werdenden Durchmessern kann die axiale Druckkraft Werte annehmen, die die Dimensionierung von Festpunkten unwirtschaftlich oder unmöglich macht. In solchen Fällen werden normalerweise verankerte Kompensatoren (Angular- oder Lateral-Kompensatoren) zur Aufnahme von Wärmedehnungen eingesetzt, die jedoch immer eine Leitungsumlenkung erfordern, weil sie - konstruktiv bedingt - eine axiale Bewegungsaufnahme nicht zulassen. Ist eine Leitungsumlenkung nicht erwünscht oder aus Platzgründen nicht möglich, so sind je nach anlagenspezifischen Gegebenheiten Streckenverankerungen oder druckentlastete Axial-Kompensatoren einsetzbar. Druckentlastete Axial-Kompensatoren sind relativ aufwändige Konstruktionen, die nur gewählt werden sollten, wenn andere wirtschaftlichere Lösungen ausscheiden. Ein Grund für ihren Einsatz kann auch sein, dass sie für zusätzliche Lateralbewegung, z. B. Schwingungen, konzipiert sind. Eine vielseitig einsetzbare Variante der entlasteten Konstruktionen stellt der eckentlastete Kompensator dar, der im Gegensatz zu den vorher genannten Ausführungen zwar eine Leitungsumlenkung erfordert, dafür aber allseitige Beweglichkeit bieten kann.

Streckenverankerungen

Behälter, die durch eine gerade Rohrleitung – oft in großer Höhe – miteinander verbunden werden müssen, können nennenswerte axiale Druckkräfte nicht aufnehmen. Ein Axial-Kompensator und eine für die Druckkraft ausreichend dimensionierte Streckenverankerung kann die geeignete Lösung sein (Bild 12.9). Die Zuganker werden fast immer bauseits festgelegt und montiert. Die Streckenverankerung ist nur voll wirksam, wenn die Zuganker außerhalb der Isolierung liegen, also "kalt" bleiben und wenn sie mittig am Behälter angreifen. Wenn gleichzeitig Höhenunterschiede ausgeglichen werden müssen, sind gelenkig gelagerte Anker und für die Gesamtbewegung ausreichend dimensionierte Axial-Kompensatoren erforderlich.

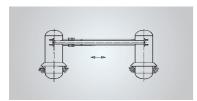


Bild 12.9 Streckenverankerte Verbindung zweier Behälter

Druckentlastete Axial-Kompensatoren

Der Ausgleich der axialen Druckkraft erfolgt bei diesen Konstruktionen über einen zusätzlichen kreis- oder ringförmigen Druckraum, der mit den beiden auseinander strebenden Enden des Arbeitsbalges gegenläufig verbunden ist (Bilder 12.10 bis 12.13):

Druckkraftausgleich über einen *Ringraum* mit einem Querschnitt, der dem wirksamen Querschnitt A des Arbeitsbalges entspricht

- Es sind drei Bälge erforderlich
- Keine Strömungsumlenkung

Druckkraftausgleich über einen kreisförmigen Druckraum

- Zwei gleiche B\u00e4lge hier au\u00dfendruckbelastet ergeben vollst\u00e4ndigen Druckkraftausgleich
- Die Strömung wird umgelenkt

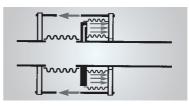


Bild 12.10 Druckentlasteter Axial-Kompensator Prinzip Ringraum

Bild 12.11 Druckentlasteter Axial-Kompensator Prinzip Druckraum

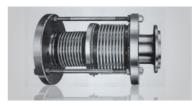


Bild 12.12 Druckentlasteter Axial-Kompensator, Prinzip Ringraum, für Chemieanlagen

Bild 12.13 Druckentlasteter Axial-Kompensator, Prinzip Ringraum, in Fernwärmetransportleitung DN 1000

Andere konstruktive Ausbildungen sind nach den gleichen Prinzipien möglich und vielfach ausgeführt worden. Letztlich muss sich die Konstruktion am Bedarfsfall orientieren. Sehr hilfreich sind dafür unsere vielwandigen Balgausführungen mit ihren geringen Verstellkräften, da gegenüber einem normalen Axial-Kompensator jetzt ein oder zwei Bälge zusätzlich bewegt werden müssen. Die axiale Verstellkraft lässt sich nicht – wie die Druckkraft – ausgleichen, sie bleibt als Festpunktbelastung erhalten.

Eckentlastete Kompensatoren

Für diese Ausführung macht man sich eine Leitungsumlenkung zunutze und setzt den Kompensator genau in die "Ecke" der Umleitung. Der Ausgleich der axialen Druckkraft erfolgt über einen zusätzlichen Balg, der außerhalb der eigentlichen Rohrleitung angeordnet als Druckkolben wirkt und seine Gegenkraft über Zuganker auf die weiterführende Leitung überträgt (Bild 12.14).

Die einfachste Ausführung ist der *eckentlastete Axial-Kompensator* mit kleiner lateraler Beweglichkeit (Bild 12.14).

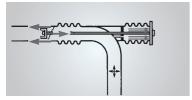


Bild 12.14 Eckentlasteter Kompensator (Prinzip)

Ein Beispiel für den praktischen Einsatz dieser Ausführung ist bei der **Verbindung von Behältern** gegeben, wenn diese nur kleine vertikale Bewegungen ausführen oder wenn bei größeren Vertikalbewegungen die evtl. zeitlich versetzte Differenzbewegung klein genug bleibt (Bild 12.15).

Andernfalls müssen Ausführungen mit größerer lateraler Beweglichkeit eingesetzt werden, die **zwei Arbeitsbälge** aufweisen (Bild 12.16).

Für räumliche Systeme können auch eckentlastete Lateral-Kompensatoren mit **Kreuzgelenken** für allseitige Beweglichkeit eingesetzt werden.

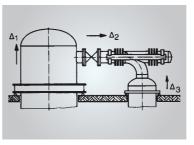


Bild 12.15 Eckentlasteter Axial-Kompensator als Behälterverbindung

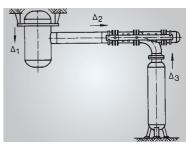
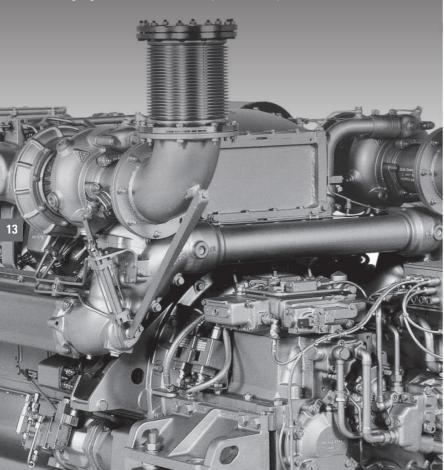



Bild 12.16 Eckentlasteter Lateral-Kompensator

SCHWINGUNGEN UND SCHALL

Strömungsmaschinen, Kolbenmaschinen und ähnliche Aggregate erzeugen aufgrund ihrer rotierenden oder

Angeschlossene Leitungen werden dadurch ebenfalls zum Schwingen angeregt, was zu Materialermüdungen und zum Schaden führen kann. Schäden sind unvermeidbar, wenn die Anschlussleitungen in Resonanz geraten. Hochfrequente Schwingungen machen sich darüber hinaus als Schall unangenehm bemerkbar, niederfrequente Schwingungen können über die Fundamente und das Erdreich weitergeleitet werden und auch an benachbarten Bauwerken Beschädigungen hervorrufen.

Um Schwingungsschäden und Schallausbreitung zu vermeiden, werden die Aggregate elastisch gelagert und deren Verbindungsleitungen durch flexible Leitungselemente abgekoppelt. Dafür stehen Schläuche und Kompensatoren aus Metall zur Verfügung. Für die Wahl des geeigneten flexiblen Elements sind im Wesentlichen die folgenden Kriterien maßgebend:

■ Maße der Anschlussstutzen

Bohrbild der Flansche Schweißendendurchmesser und -dicke Art und Abmessung der Verschraubungen Sonderanschlüsse

■ Betriebsdaten

Druck

Temperatur

Strömungsgeschwindigkeit

Medium (eventuelle Verunreinigungen)

■ Zulässige Kräfte und Momente

auf den Stutzen

auf das gesamte Aggregat (Standfestigkeit)

- Wärmedehnungen, falls zusätzlich aufzunehmen
- Schwingungen (Dauerschwingungen)
- Richtung

Amplitude

Frequenz

- Vorhandener Einbauraum für flexible Elemente
- Festpunkte und Führungen an den abgehenden Leitungen (gegebene Möglichkeiten)

(HYDRA®) 1501de/19/10/23/pdf WITZENMANN **Anschlüsse** für die Schwingungselemente sind überwiegend Flansche nach EN 1092 oder vergleichbare Normen. Für Motoren werden aus Platzmangel häufig Flansche in Sonderausführung erforderlich.

Aus den **Betriebsdaten** "Druck und Temperatur" lässt sich über den Abminderungsfaktor der Nenndruck des flexiblen Leitungselementes bestimmen. Durch sie wird auch die Wahl der Werkstoffe für den gewellten Teil und für die Anschlussteile beeinflusst (siehe Kapitel 5 "Auswahl der Kompensatoren").

Aus dem Betriebsdruck errechnet sich außerdem die axiale Druckkraft, die als Längskraft in jeder druckführenden Rohrleitung wirkt. Sie wird beim Einsatz eines Axial-Kompensators aber freigesetzt und belastet einerseits direkt die nächste Halterung sowie andererseits das Aggregat (Bild 13.1). Dieses Thema wird ausführlicher in Kapitel 12 "Axiale Druckkraft und entlastete Konstruktionen" behandelt.

Zu beachten ist, dass die freigesetzte *axiale Druckkraft* auf die Innenwand des Gehäuses wirkt, die dem Anschlussstutzen gegenüberliegt (Bild 13.2) und je nach Größe der Kraft das elastisch gelagerte Aggregat unzulässig neigen oder versetzen kann. Neben dem Gewicht der Maschine und den elastischen Kenngrößen der Lagerung spielt die Lage der Anschlussstutzen eine Rolle, weil davon die Richtung der Kraft und damit deren zulässige Größe abhängt.

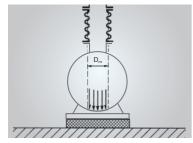


Bild 13.1 Axiale Druckkraft auf ein Aggregat vertikal wirkend

Treten seitliche Kräfte auf, sollten immer die zulässigen **Stutzenbelastungen** überprüft werden. Dies gilt besonders dann, wenn Lateral-Kompensatoren eingebaut werden, die sich wegen ihrer Verankerung nur seitlich bewegen können. HYDRA Lateral-Kompensatoren mit vielwandigen Bälgen haben vergleichsweise kleine seitliche Steifigkeiten, die aber bei Typen für hohe Betriebsdrücke wegen des Reibkraftanteils oder bei zu kurz gewählten Baulängen zu groß werden können, besonders dann, wenn gleichzeitig Wärmedehnung aufgenommen werden soll.

Das durchgeleitete Medium beeinflusst zusätzlich die Werkstoffwahl, wenn es aggressiv ist oder aggressive Bestandteile enthält (siehe Kapitel 5 "Auswahl der Kompensatoren").

Nennenswerte Schwingungen mit Amplituden um 0,1 - 0,5 mm entstehen vorwiegend an Kolbenmaschinen mit ihren hin- und hergehenden Massen. Turbinen, Kreiselpumpen und Turboverdichter erzeugen meist nur Schwingungen mit sehr kleiner Amplitude, häufig im hörbaren Frequenzbereich, die auf Unwuchten bzw. auf die Druckunterschiede an den Schaufeln (Drehklang) zurückzuführen sind.

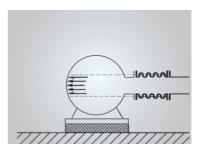


Bild 13.2 Axiale Druckkraft auf ein Aggregat horizontal wirkend

Bei allen Maschinen treten daher die größten Amplituden in einer Ebene auf, die senkrecht zur Drehachse liegt. Je nach Lage der Stutzenanschlüsse können sich daraus für die flexiblen Elemente ganz unterschiedliche Anforderungen ergeben, die bei der Auswahl zu beachten sind.

Neben den Schwingungswerten im Dauerbetrieb, die dauerfest ausgelegte Elemente erfordern, sind häufig bis zu fünfmal größere Bewegungsamplituden beim Anfahren zu erwarten, insbesondere dann, wenn die Maschine dabei eine kritische Drehzahl durchfahren muss. Diese größeren Bewegungsanschläge können im Allgemeinen bei der Auslegung der flexiblen Elemente unberücksichtigt bleiben, da sie im Interesse einer schonenden Fahrweise der Maschine meist nur sehr kurzzeitig auftreten dürfen.

Die ersten Eigenfrequenzen der flexiblen Elemente sollen oberhalb der Erregerfrequenzen der Maschine und weit genug davon entfernt liegen.

Zur **Schallisolation** müssen dagegen Elemente verwendet werden, deren Eigenfrequenzen unterhalb der Schallfrequenz liegen, was sich praktisch von selbst ergibt. Solche Elemente können auch nur Körperschall isolieren. Der evtl. im Medium (z.B. Wasser) weitergeleitete Schall wird normalerweise von flexiblen Verbindungselementen nur unwesentlich gedämpft.

Umflochtene HYDRA Metallschläuche und vielwandige HYDRA Kompensatoren mit ihrem besonderen Konstruktionsprinzip haben eine schalldämmende Wirkung, was versuchstechnisch nachgewiesen werden konnte. So können vielwandige HYDRA Axial-Kompensatoren den Körperschall bis zu 20dB dämmen. Sie sind damit einwandigen Ausführungen weit überlegen.

Druckstöße im Medium, die auch die Rohrleitungen verformen oder zum Schwingen bringen können, sind nicht mit elastischen Elementen zu beseitigen. Dazu müssen Flüssigkeitsdämpfer eingesetzt werden.

FLEXIBLE ELEMENTE ZUR SCHWINGUNGSAUFNAHME

Alle von uns für den Anschluss an schwingenden Aggregaten vorgesehenen ganzmetallischen flexiblen Leitungselemente sind druck- und temperaturbeständig und absolut dicht. Sie altern nicht und sind bei richtiger Auswahl und Montage von praktisch unbegrenzter Lebensdauer.

Abhängig von den jeweiligen Anforderungen können unterschiedliche flexible Elemente zum Einsatz kommen (Bilder 13.3 und 13.4). Einen Überblick über mögliche Ausführungen und erste Hinweise zu ihrer sinnvollen Anwendung gibt die nachstehende Aufstellung (Bild 13.5). Bei differenzierter Bewertung des Einzelfalles sind Abweichungen von den gegebenen Richtwerten möglich.

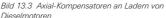


Bild 13.4 Axial-Kompensatoren an Pumpen

512 *WITZENMANN* 1501de/19/10/23/pdf (HYDRA) 1501de/19/10/23/pdf *WITZENMANN* **51**:

ÜBERSICHT

Nummer	Flexibles Element		Bewegung Richtw	erte	Nennweiten DN	max. Nenndruck (PN)
1		Axial - Kompensator	+	allseitig	15 – 100 150 – 1000 ≥ 1000	≤ 2,5 ≤ 1 drucklos
2		Lateral - Kompensator mit Geflechtverankerung	(((أو)))	Schall allseitig in Kreisebene	15 – 40	25
3		Lateral-Kompensator mit elastisch gelagerten Rundankern (Gestrickekissen)	(((أم)))	Schall allseitig in Kreisebene	50 – 500	25
4		Metallschlauch im 90°-Bogen (siehe Handbuch Nr. 1301 "Metallschläuche")	+	allseitig	≤ 100	25
5		Lateral - Kompensatoren mit Rundankern in 90°-Winkelanordnung	-	allseitig	50 – 500	63
6		Eckentlasteter Gelenk - Kompensator (Sonderausführung auf Anfrage)	-	allseitig	50 – 500	63

Über die Richtwerte hinaus gehende Werte sind möglich.

AXIAL-KOMPENSATOREN

Das im Aufbau einfachste und wirtschaftlichste Element, der Axial-Kompensator, ist immer anwendbar, wenn das Aggregat die axiale Druckkraft erträgt, die für einen häufiger in Frage kommenden Bereich aus nachstehender Tabelle entnommen werden kann (Bild 13.6).

Nenndruck PN		Nennweite DN											
	50	50 65 80 100 125 150 200											
1	450	700	900	1350	2000	2800	4500						
2.5	1100	1700	2200	3800	5000	7000	11200						
6	2700	4100	5300	8100	12100	16750	66900						
10	4500	4500 6800 8800 13500 20100 27900 44800											

Bild 13.6

Axiale Druckkraft in N: Werte für größere Abmessungen und höhere Drücke sind dem Diagramm (Bild 4.3) in Kapitel 4 "Kompensationsarten" zu entnehmen.

Schwingungsamplitude

Die zulässige Schwingungsamplitude lässt sich aus der axialen Bewegungsaufnahme berechnen:

Axiale Schwingungsamplitude

(13.1)
$$\hat{a}_s = 0.03 \cdot 2\delta$$

Axiale Bewegungsaufnahme bei Temperatur, 2δ in mm ($2\delta = K_{\Lambda\delta} \cdot 2\delta_N$)

Laterale Schwingungsamplitude (ein Balg)

(13.2)
$$\hat{a}_{\lambda} = 0.01 \frac{1}{D_a} \cdot 2\delta$$

Gewellte Länge des Balges I in mm, Außendurchmesser des Balges Da in mm

Die Gleichungen geben Maximalwerte für Schwingungen in einer Richtung an. Bei allseitigen Schwingungen sind jeweils anteilige Werte zulässig.

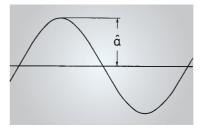


Bild 13.7 Sinusschwingung

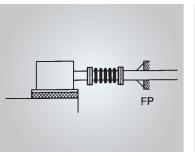
Wärmedehnung

Ist zusätzlich Wärmedehnung aufzunehmen, können die dafür zulässigen Werte auf übliche Weise berechnet werden (siehe Kapitel 5, "Auswahl der Kompensatoren"), d.h. die Dauerschwingungen dürfen unberücksichtigt bleiben. Das gilt auch bei lateraler Dehnungsaufnahme, die sich für Axial-Kompensatoren mit Einfachbälgen gemäß nachstehender Gleichung berechnen lässt:

Äquivalente laterale Bewegungsaufnahme

$$(13.3) 2\lambda = 2\delta \cdot \frac{1}{3} \cdot \frac{1}{D_a}$$

Laterale Federrate


(13.4)
$$c_{\lambda} = 1.5 c_{\delta} \left(\frac{D_a}{I} \right)^2$$

Axiale Federrate aus Maßtabellen der Axial-Kompensatoren c_{δ} in N/mm. Mit Hilfe der Federrate kann die zu erwartende Stutzenbelastung ermittelt werden (siehe Kapitel 9 "Einbau der Kompensatoren").

Führungen und Festpunkte

Die durch Axial-Kompensatoren abgekoppelten, abgehenden Leitungen schwingender Aggregate müssen direkt nach dem Kompensator gehalten sein, wobei darauf zu achten ist, dass die Befestigung vom schwingenden Fundament unabhängig sein muss. Eine als Festpunkt oder Gleitfestpunkt ausgebildete Halterung muss ausreichend dimensioniert sein, neben den Verstellkräften auch die axiale Druckkraft aufnehmen zu können (Bild 13.8). Ein Gleitfestpunkt wird gewählt, wenn gleichzeitig seitliche Wärmedehnungen aufzunehmen sind (Bild 13.9).

WITZENMANN

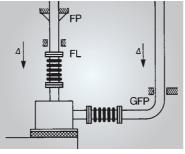


Bild 13.8 Axial-Kompensator an schwingendem Aggregat, Festpunkt

Bild 13.9 Axial-Kompensator an schwingendem Aggregat, Führungen und Festpunkte

Eigenfrequenzen

Für das Standardprogramm "Axial-Kompensatoren für Niederdruck" sind die Eigenfrequenzen in axialer und radialer Richtung angegeben. Sie gelten nur beim Einsatz der Kompensatoren für gasförmige Medien. Sollen andere Axial-Kompensatoren zur Schwingungsaufnahme eingesetzt werden, ist bei der Ermittlung der Eigenfrequenzen zu berücksichtigen, ob Gas oder evtl. Flüssigkeit durch den Kompensator geleitet wird, da die Eigenfrequenzen auch vom Fördermedium abhängen. Die Eigenfrequenzen können wir auf Wunsch für Sie errechnen

Leitrohr

Innere Leitrohre in Normalausführung sind für den Einsatz in schwingenden Kompensatoren ungeeignet, da sie die Seitenbewegung behindern würden. Wenn Leitrohre erforderlich sind, z.B. bei hohen Strömungsgeschwindigkeiten (siehe Kapitel 5 "Auswahl der Kompensatoren") oder bei abrasiven Verunreinigungen im strömenden Medium, können die Kompensatoren als Sonderausführung mit einteiligen abgesetzten Leitrohren geliefert werden (Bild 13.10).

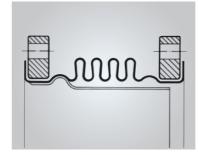


Bild 13.10 Axial-Kompensator mit einteiligem abgesetztem Leitrohr

METALLSCHLÄUCHE

Wenn bei höheren Drücken die Nennweiten klein genug sind (bis ca. DN 100), kommen umflochtene Metallschläuche für die Schwingungsaufnahme in Betracht, bei denen das Geflecht die Druckkräfte übernimmt. Im 90°-Bogen eingebaut können sie bei nur geringen Verstellkräften allseitige Schwingungen aufnehmen.

Bild 13.11 Metallschlauch im 90°-Bogen an einem Schraubenverdichter

LATERAL-KOMPENSATOREN

Lateral-Kompensatoren werden an schwingenden Aggregaten dann eingesetzt, wenn die Betriebsdrücke so hoch sind, dass wegen der axialen Druckkraft ein Axial-Kompensator nicht mehr in Betracht kommt und ein Metallschlauch wegen der gegebenen Anschlussdurchmesser oder sonstiger Bedingungen nicht mehr geeignet ist. Für Schwingungen, die nur ein einer Ebene senkrecht zur Achse des Anschlussstutzens liegen, kommt man mit einem Kompensator aus, der in dieser Ebene allseitig beweglich sein muss. Geeignet ist die Ausführung mit kugelig gelagerten Rundankern (Bild 13.12 und 13.13).

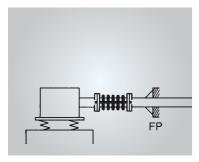


Bild 13.12 Lateral-Kompensator an schwingendem Aggregat

Bild 13.13 Lateral-Kompensator mit Rundankern an schwingendem Aggregat

Treten räumliche Bewegungen in allen Richtungen auf, muss ein weiterer Kompensator rechtwinklig zum ersten eingebaut werden. Abhängig von der Größe der Schwingungsamplituden und von eventuellen Wärmedehnungen ist zusätzlich ein Angular-Kompensator (Bild 13.14) oder ein Lateral-Kompensator (Bild 13.15) einzusetzen. Wird ein Angular-Kompensator gewählt, muss er so eingebaut werden, dass er mit dem Lateral-Kompensator zusammen arbeiten kann, d.h. der Rohrbogen muss Kippbewegungen ausführen können und der Lateral-Kompensator muss so ausgeführt sein, dass er am zugehörigen Flansch ebenfalls Kippbewegungen zulässt.

Wird als zweiter Kompensator wieder ein Lateral-Kompensator gewählt, müssen die Verankerungen der beiden Lateral-Kompensatoren um 90° gegeneinander verdreht angeordnet werden (Bild 13.15).

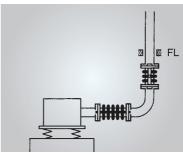


Bild 13.14 Lateral- und Angular-Kompensatoren an schwingendem Aggregat

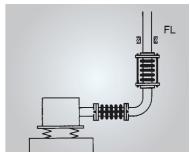


Bild 13.15 Lateral-Kompensatoren an schwingendem Aggregat

1

ECKENTLASTETE KOMPENSATOREN

Eckentlastete Kompensatoren können unter Umständen die geeignete Lösung sein, da sie bei geringer schwingender Masse allseitig räumliche Schwingungen ausführen können (Bild 13.16).

Diese angepasste Sonderausführung wird meist etwas teurer als die Lösung nach Bild 13.15.

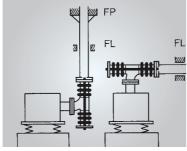


Bild 13.16 Eckentlasteter Kompensator an schwingendem Aggregat

SCHALLISOLIERENDE KOMPENSATOREN

Müssen, wie vorstehend dargelegt, wegen der Betriebsbedingungen Lateral-Kompensatoren eingesetzt werden, so ist Körperschalldämmung nicht mehr ohne weiteres gegeben, da trotz vielwandiger Bälge die Verankerungen den Schall übertragen würden.

Bei kleineren Nennweiten stehen für diese Fälle Lateral-Kompensatoren mit Geflechtverankerungen (Bild 13.17) oder bei größeren Nennweiten speziell entwickelte HYDRA Lateral-Kompensatoren (Typen LBS und LRS) mit geräuschdämmend gelagerten Zugankern zur Verfügung, die den gewünschten schalldämmenden Maschinenanschluss gewährleisten. Die zur Lagerung der Zuganker eingesetzten Dämmkissen aus Edelstahldraht sind alterungs- und temperaturbeständig und behalten daher ihre charakteristischen Eigenschaften auch bei höheren Temperaturen über die vorgesehene Betriebszeit praktisch unverändert bei (Bild 13.18).

Die zulässige Schwingungsamplitude beträgt für Dauerschwingungen bei allen Kompensatoren ca. 5 % der in den Maßtabellen angegebenen einseitigen Bewegungswerte (δ , α , λ) für 1000 Lastspiele.

In allen Fällen soll das elastische Element so nahe wie möglich an das schwingende Aggregat montiert werden, um zusätzliche Bewegungen zu vermeiden.

Unmittelbar hinter das Ausgleichselement ist ein vom Schwingungsfundament unabhängiger Festpunkt oder ein Führungslager zu setzen, um die schwingfähige Masse so klein wie möglich zu halten. Damit wird die Gefahr, dass Eigenschwingungen auftreten könnten, weitgehend vermieden.

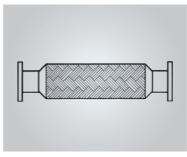


Bild 13.17 Lateral-Kompensatoren kleiner Nennweite mit Geflechtverankerung für Schwingungen (schallisoliert)

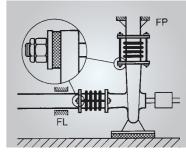


Bild 13.18 Lateral-Kompensatoren (schallisoliert)

HERSTELLUNG

Balgformung

Die Balgherstellung beginnt mit der Fertigung von ein- oder mehrwandigen Zylindern bzw. Zylinderpaketen aus gut verformbarem Werkstoff, überwiegend aus austenitischem Stahl (z.B. 1.4541).

Hierzu werden aus dünnen Bändern (0,3bis 2 mm) oder Blechen erst eine Platine, anschließend ein vorgerundeter Zylinder und in einem letzten Schritt der längsnahtgeschweißte Einzelzylinder hergestellt.

Vielwandige Bälge werden aus mehreren ineinander gefügten Einzelzylindern (Zylinderpaket) hergestellt (Bild 14.1).

Beim Umformen der Zylinder oder Zylinderpakte zu Bälgen werden ringförmige Wellen ausgeformt. Die hierfür eingesetzten Umformverfahren lassen sich in zwei Grundverfahren unterteilen: Abhängig von der Balggeometrie und der Nennweite erfolgt die Umformung entweder hydraulisch oder mechanisch. Beim hydraulischen Verfahren wird ein durch äußere und innere Werkzeuge abgeteiltes Zylinderstück mit einer speziellen Umformemulsion - unter hohem Druck - von innen beaufschlagt. Eine Welle entsteht indem der Zylinder / das Zylinderpaket durch den aufgebrachten Innendruck in Umfangsrichtung umgeformt wird . Das Material erfährt dabei nur die Geometrieänderung und bedarf keiner Nachbehandlung. Der Prozess ist sehr materialschonend.

Bild 14.1 Zylinderpakete

Eine Variante des hydraulischen Balgformens ist die Elastomerformung, bei der ein Elastomerkissen die Aufgabe der Hydraulikflüssigkeit übernimmt. Das Kissen wird durch ein bewegliches Werkzeug nach außen gedrückt und formt so die Welle aus. Das Verfahren eignet sich vor allem für dicke Wandstärken und wird bis DN 1200 eingesetzt. Hierzu stehen uns automatisierte Pressen - mit einer Presskraft von bis zu 1000 Tonnen - zur Verfügung.

Zu den mechanischen Verfahren gehören die Rollformung und das Punching. Beide werden überwiegend für mittlere bis große Durchmesser eingesetzt. Bei der Rollformung formen gleichzeitig mehrere Rollwerkzeuge den Balg in einem Fertigungsdurchgang. Beim Punching hingegeben wird mittels Segmentwerkzeugen Welle für Welle radial ausgeformt. Alle bei Witzenmann produzierten Bälge für Kompensatoren werden automatisiert umgeformt. Umfangsnähte an den Wellen werden nicht benötigt. Neben dem genannten austenitischen Stahl 1.4541 kommen – je nach Bedarfsfall – andere genügend verformbare Werkstoffe für die Balgherstellung zum Einsatz, für deren Verarbeitung wir ein umfassendes Know-how entwickelt haben.

Schweißtechnik

Von ebenso entscheidender Bedeutung wie die Balgformung ist für uns die Schweißtechnik. Besonders hohe Anforderungen werden an die schon erwähnte Zylinderlängsnaht gestellt, die den Umformprozess schadlos überstehen muss, sowie an die Anschlussnaht, die den Balg und die Anschlussteile druckdicht miteinander verbindet. Anschlussnähte werden, je nach Kompensatorausführung, Abmessungen und Materialkombination auf unterschiedliche Weise ausgeführt. Entscheidend ist, dass die Verbindungsnaht jeweils so konstruiert und ausgeführt ist, dass der Kompensator über seine lange Betriebszeit absolut dicht bleibt. Für die Ausführung der Schweißnähte wird das jeweils geeignete und wirtschaftlichste Verfahren eingesetzt. Dabei kommen Verfahren wie Laser, WIG, MIG, MAG und UP zum Einsatz, die auch weitgehend automatisiert sind. Die Verfahren sind vielfach erprobt und durch Verfahrensprüfungen abgesichert. Die Schweißungen werden nur von geprüften Schweißern nach vorgegebenen Parametern ausgeführt. Die gleiche Sorgfalt widmen wir den sonstigen Schweißnähten, z.B. an den Verankerungen der Gelenkkompensatoren, die teilweise im Kraftfluss liegen und daher ebenfalls von entsprechend hoher Qualität sein müssen

PRÜFUNG UND ÜBERWACHUNG

Neben der Herstellung und unabhängig vom herstellenden Personal werden Prüfungen zur Absicherung der Qualität unserer Kompensatoren durchgeführt. Nachstehend werden die wichtigsten Prüfschritte und Prüfungen beschrieben, die wir im Standardfall durchführen.

Standard-Eingangsprüfungen

Alles Band - und Blechmaterial wird beim Eingang in unser Werk einer Eingangskontrolle unterzogen, deren Umfang je nach vorgesehenem Verwendungszweck unterschiedlich sein kann. Dabei wird geprüft, ob die in unseren Bestellvorschriften gestellten Forderungen erfüllt werden:

- Zeugnisbelegung
- Kennzeichnung
- Werkstoffanalyse
- Physikalische Materialwerte
- Abmessungen / Toleranzen
- Oberflächenbeschaffenheit

Das Bandmaterial ist dementsprechend mit einem amtlichen Abnahmeprüfzeugnis nach DIN EN 10204 - 3.1 belegt.

Fertigungsüberwachung

Durch das betriebliche Aufsichtspersonal findet eine laufende Überwachung der Fertigung statt. Darüber hinaus wird durch die Qualitätsstelle stichprobenweise kontrolliert auf:

- Gültige Arbeitsanweisungen am Arbeitsplatz
- Aktuelle Umformparameter für die Balgfertigung
- Gültige Schweißparameter für Zylinderlängsnähte und Verbindungsnähte
- Richtige Schweißzusatzwerkstoffe
- Vorwärmtemperaturen
- Maßhaltigkeit von Bauteilen und Baugruppen

Bei Vorliegen besonderer Anforderungen können fertigungsbegleitende Kontrollen durch die Qualitätsstelle durchgeführt werden.

1.

Standard-Endprüfungen

An den fertigen Kompensatoren werden vor der Auslieferung nachstehend aufgeführte Endprüfungen durchgeführt, die quasi zum Fertigungsprozess gehören und keine zusätzlichen Kosten verursachen. Sie werden intern dokumentiert. Eine Zeugnisbelegung über diese Prüfungen ist gegen Kostenerstattung möglich, wenn sie bei der Bestellung vereinbart wird.

Dichtheitsprüfung

Unsere Kompensatoren werden in der Regel auf Dichtheit geprüft. Je nach Bauart, Größe und Anwendungsfall des Kompensators wird nach unterschiedlichen Verfahren geprüft.

Stickstoff unter Wasser

Der Kompensator wird in einem Prüfbecken zwischen zwei dichtende Platten gespannt und mit Stickstoff mit 2-4 bar Druck gefüllt. Anschließend wird das Becken mit Wasser geflutet. Nach festgelegter, ausreichend bemessener Haltezeit darf keine Blasenbildung zu erkennen sein. (Leckrate kleiner 10-3 mbar I / s mbar I/s)

■ He-Schnüffelverfahren

Der abgedichtete eingespannte Kompensator wird mit einem Gasgemisch aus Stickstoff und Helium beaufschlagt (ca. 2 bar Druck) und an allen kritischen Stellen mit einer He-Sonde abgeschnüffelt. (Leckrate kleiner 10⁻⁵ mbar I / s).

■ Helium Lecktest unter Vakuum

Als Sonderprüfung kann bei Bedarf ein Helium Lecktest durchgeführt werden, bei dem der Kompensator innen vakuumiert und von außen einer Heliumatmosphäre ausgesetzt wird. Hierbei kann Helium durch vorhandene Leckagen nach innen diffundieren und detektiert werden.

(Leckrate kleiner 10-9 mbar | / s)

Druckprüfung

Bei Bedarf werden Kompensatoren einer Druckprüfung in einer Prüfpresse unterzogen. Der Prüfdruck wird entsprechend den amtlichen Vorschriften nach folgender Formel aus Kapitel 5 berechnet.

(5.11)
$$P_{T} = \max \begin{cases} 1,25 \cdot PS \cdot \frac{f_{0}}{f} \\ 1,43 \cdot PS \end{cases}$$

Bei größeren Abmessungen und höheren Drücken wird während der Druckprüfung zur Reduzierung der Axialkräfte ein stabiles Innenrohr druckdicht eingespannt. Wenn bei sehr hohen Druckkräften die vorhandenen Standard-Prüfvorrichtungen nicht mehr ausreichen, wird von uns empfohlen, die Druckprüfung des Kompensators zusammen mit der Anlage durchzuführen. Der Kompensator darf dabei keine Undichtheiten und keine sicherheitstechnisch bedenklichen Verformungen aufweisen.

Maßprüfung

Überprüfung auf Maßhaltigkeit, insbesondere bezüglich der Einbau- und Anschlussmaße.

Sichtprüfung

Überprüfung auf sichtbare Mängel oder Beschädigungen, insbesondere der Balgwellen.

Über diesen Prüfumfang hinausgehende Prüfungen und Abnahmen sowie die dazugehörigen Dokumentationen sind möglich. Die dazu erforderlichen Einrichtungen stehen zur Verfügung. Der Prüfumfang sollte in jedem Fall sehr genau überlegt und auf das für den Bedarfsfall wirklich Erforderliche beschränkt werden, da die Prüfkosten sehr hoch sein können und leicht auch den Preis des Kompensators übersteigen.

KENNZEICHNUNG

Unsere Kompensatoren werden im Normalfall mit einem dauerhaften Typenschild aus Edelstahl versehen, das als Mindestangaben enthält:

- Witzenmann
- Pforzheim
- Fabrikationsnummer
- Typ, PN, DN, Bewegungsgröße
- Herstellungsjahr

Kompensatoren ohne Anschlussteile (Kompensationsbälge) erhalten statt eines Typenschildes einen Aufkleber, einen Anhänger oder eine anderweitige Beschriftung.

Flansche und Schweißenden sind durch eingeschlagene Daten gesondert gekennzeichnet:

- Flansche
 DN / PN / Material / Herstellerzeichen
- Schweißenden
 DN / Material / Herstellerzeichen

Kompensatoren der Niederdruckreihe erhalten im Normalfall keine Typenschilder, ihre Flansche und Schweißenden sind nicht gekennzeichnet. Bei abnahmepflichtigen Kompensatoren erfolgt die Kennzeichnung der verwendeten Teile und der Kompensatoren (Typenschilder) nach vereinbarter Spezifikation. Vorspannungseinrichtungen und Transportsicherungen, die nach dem Einbau des Kompensators entfernt werden müssen, sind speziell gekennzeichnet (zusätzliche Aufkleber in Kontrastfarben weisen darauf besonders hin).

KORROSIONSSCHUTZ

Standardausführung

Die Bälge unserer Kompensatoren – einige Sonderausführungen ausgenommen – sind ausschließlich aus nichtrostenden Stählen, überwiegend aus austenitischem Stahl 1.4541, hergestellt und bedürfen normalerweise keines Korrosionsschutzes. Das gleiche gilt für Anschlussteile aus Edelstahl. Die ferritischen Stahlteile der Kompensatoren wie Flansche und Verankerungen (außer Schweißenden) werden von außen durch Rostschutzlack für den Transport und eine kurzfristige Lagerung auf der Baustelle geschützt. Schweißenden sind, je nach Bauart des Kompensators, ebenfalls lackiert oder sprühgeölt. Bei lackierten Schweißenden ist der Schweißbereich abgeklebt. Alle ferritischen Teile sind, soweit zugänglich, von innen geölt.

Sonderausführung

Für besondere Bedarfsfälle und auf Kundenwunsch kann der Korrosionsschutz der Stahlteile nach Vereinbarung erweitert werden. Es kommt Sonderlackierung, Kunststoffbeschichtung oder Verzinken in Frage.

VERPACKUNG

Standardverpackung

Wenn nichts anderes vereinbart, werden die Kompensatoren je nach Größe und Gewicht stoßgesichert im Karton auf einer Palette oder frei auf eine Palette gespannt ausgeliefert. Frei auf Palette gespannt werden meist nur Gelenkkompensatoren, deren Bälge mit einem Balgschutz versehen werden. Der Balgschutz aus Wellpappe und Blech schützt vor Beschädigung durch leichtere Stöße und vor Schweißspritzern. Großkompensatoren werden je nach Transportweg verpackt.

Transportsicherungen

Wenn es wegen schwerer Anschlussteile erforderlich ist, werden Transportsicherungen angebracht, die die Kompensatoren während des Transportes auf Maß halten und vor Transportschwingungen schützen. Werden dafür Metallteile angeschweißt oder angeschraubt, sind diese durch gesonderte Lackierung kenntlich gemacht. Sie müssen nach dem Einbau entfernt werden.

Sonderverpackungen

Sonderverpackungen werden nach Vereinbarung durch unser Haus selbst oder durch von uns beauftragte Spezialunternehmen ausgeführt.

HINWEISE FÜR DIE MONTAGE VON WITZENMANN-KOMPENSATOREN MIT FEST- ODER LOSFLANSCHEN

HYDRA Kompensatoren sind wartungsfrei. Sie sind ausschließlich für die im Auftrag vereinbarten Bedingungen konzipiert. Ihre dauerhaft sichere Funktion ist nur gewährleistet, wenn sie auf geeignete Weise in Systemen angeordnet und eingebaut sind und wenn sie unbeschädigt und unbehindert arbeiten können. Siehe auch "Einbau der Kompensatoren" in unserem Handbuch. Hinweis: Auch verankerte Kompensatoren können sich durch Druckkraft minimal elastisch ausdehnen oder zusammenziehen. Die Funktion ist dadurch nicht eingeschränkt, da die Längenänderung in einem Mehrgelenksystem durch Leitungsbiegung oder andere Kompensatoren aufgenommen wird. Bei Bedarf kann Witzenmann weitere Informationen liefern. Aus Sicherheitsgründen dürfen an Kompensatoren während dem Betrieb keine Arbeiten erfolgen.

Generelle Montagehinweise

- Kompensator vor Einbau auf evtl. Beschädigungen überprüfen
- Kompensator vorsichtig handhaben keine groben Stöße oder Schläge nicht werfen
- Ketten oder Seile nicht am Balg anschlagen
- Balg vor Abrasion und Schweißspritzern schützen mit nichtleitendem Material abdecken
- Elektrischen Kurzschluss durch Schweißelektrode, Massekabel usw. verhindern – kann Balg zerstören
- Balgwellen innen und außen von Fremdkörpern freihalten (Schmutz, Zement. Isoliermaterial) – vor und nach der Montage kontrollieren
- Vor dem Isolieren mit Mineralwolle rundum mit Blech abdecken
- Kein Isoliermaterial mit korrosiven Bestandteilen verwenden
- Übermäßige Bewegung sowie Torsion (Verdrehung) unbedingt während Montage und Betrieb (Bild 16.1) vermeiden

Bild 16.1 Rohrleitung mit Axial - Kompensator

Auf ausreichend dimensionierte Festpunkte an den Enden der kompensierten Leitungsabschnitte achten. Diese müssen sowohl die axiale Druckkraft (bei unverankerten Kompensatoren) aufnehmen als auch die Verstellkraft des Kompensators und die Reibkräfte der Rohrlager — insbesondere die axiale Druckkraft kann sehr groß werden (Bild 16.2).

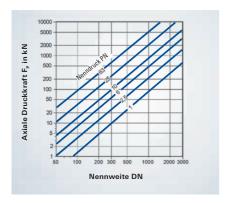


Bild 16.2 Axiale Druckkraft bei axial kompensierter Leitung

- Vor der Druckbeaufschlagung der Leitung sind Flanschverbindungen, Führungen, Fest- und Loslager auf sachgerechte Montage und Funktion zu überprüfen
- Eine Druckprobe außerhalb der Anlage oder eine Druckprobe an mit Blindflanschen verschlossenen Kompensatoren ist nur nach Rücksprache mit Witzenmann zulässig
- Der zulässige Prüfdruck und die zulässige Auslenkung dürfen in keinem Fall überschritten werden
- Strömungsrichtung bei Kompensatoren mit Leitrohren beachten
- Nach der Druckprobe ggf. Flüssigkeitsreste in den Wellen entfernen kann zu Korrosion oder zu Dampfexplosion bei schneller Temperaturerhöhung führen

Montagehinweise für Axial- und Universal-Kompensatoren

- Zwischen zwei Festpunkten nur einen Axial-Kompensator anordnen
- Bei mehreren Axial-Kompensatoren in einer geraden Rohrstrecke diese durch (leichte) Zwischenfestpunkte unterteilen
- Rohrleitungen mit Axial-Kompensatoren müssen geführt sein. Beiderseits des Axial-Kompensators sind Führungen erforderlich; Festpunkte erfüllen die Führungsfunktion. (Maximalabstände siehe Bilder 16.3 und 16.4 sowie in den angewandten Regelwerken)

Bild 16.3 Führungsabstände von Rohrleitungen mit Axial- Kompensatoren

- An der Einbaustelle des Kompensators müssen die ankommenden Rohrleitungsenden fluchten. Der Ausgleich von Montagetoleranzen durch Auslenkung von Kompensatoren ist nur nach Rücksprache mit Witzenmann zulässig.
- Beim Anschluss an schwingende Aggregate Rohrleitung direkt nach dem Kompensator fixieren

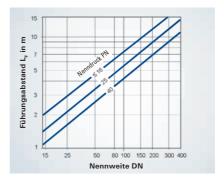


Bild 16.4 Empfohlene Abstände für Rohrführung bei axial kompensierten Leitungen

16

Montagehinweise für verankerte Kompensatoren

- Nahe des Kompensationssystems geeignete Rohrführungen oder Aufhängungen vorsehen Querbewegungen der Rohrleitung beachten
- Richtige Lage der Drehachsen beim Einbau beachten: parallel zueinander und senkrecht zur Bewegungsrichtung
- Funktionsgerechte Lage der Zuganker beim Einbau von Lateral-Kompensatoren beachten (siehe "Einbau der Kompensatoren" in unserem Handbuch!)
- Die werksseitige Einstellung von Zugankern mit Muttern darf nicht verändert werden
- Das Leitungsgewicht darf nicht über Kompensatoren abgefangen werden keine durchhängenden Leitungen, keine zusätzlichen Lasten auf der Verankerung

Generelle Montagehinweise

Bei der Montage von Kompensatoren mit Flanschanschluss ist das Anzugsmoment der Schrauben so zu wählen, dass die Dichtheit der Flanschverbindung gewährleistet ist und gleichzeitig die zulässige Auslastung der Bauteile nicht überschritten wird. Die Berechnung des korrekten Anzugsmomentes kann auf Basis verschiedener nationaler sowie internationaler Regelwerke erfolgen, wobei jeweils die Dichtungsparameter, das Anzugsverfahren sowie die spezielle Flanschgeometrie und Bauteilanbindung zu berücksichtigen sind.

Schraubenmontage

- Geeignetes Anzugsmoment gemäß Regelwerk berechnen
- Schrauben immer über Kreuz und nach dem in der Berechnung festgelegten Anzugsverfahren anziehen

Montage von Losflanschen

■ Bei Losflanschen ist der Balgbord um den Flansch gebördelt. Technisch bedingt steht der Bord leicht vom Flansch ab. Die Funktion ist dadurch nicht eingeschränkt. Die federnden Eigenschaften des Bordes führen zu einem gleichmäßigen Anpressdruck der Dichtung an den Gegenflansch, der Bördel legt sich beim Verschrauben des Flanschpaares weiter an.

■ Der Dichtleistendurchmesser eines Bördelkompensators ist fertigungstechnisch in seiner Ausdehnung limitiert und kann daher von den in den Regelwerken angegebenen Dichtleis-tendurchmessern abweichen. In der Folge kann es bei Verwendung einer Standard-Dichtung zu einem Überstand der Dichtung über die Dichtleiste des Kompensators kommen. Auch wenn der scharfkantige Balgbord hierbei die Dichtung einschneidet ist dies unkritisch zu sehen, da der äußere Teil der Dichtung ohnehin keine Dichtwirkung hat. Von Nachbear-beitungen des Balgbordes in Form von Schleifen oder Schneiden ist abzusehen, da dann die Funktion der Dichtfläche nicht mehr sichergestellt werden kann.

Dichtung

■ Dichtungen sind nach jeder Demontage auszutauschen

4.0

Im Kapitel 17 finden Sie die grundlegenden Eigenschaften und die Beschaffenheit der verwendeten Werkstoffe. Hierzu zählen neben der jeweiligen Lieferform, die Grenztemperaturen sowie die Festigkeitswerte bei Raumtemperatur.

Im Folgenden sind die chemische Zusammensetzung der Werkstoffe sowie deren Festigkeit bei erhöhten Temperaturen vermerkt. Abschließend finden Sie eine Auflistung der Werkstoffbezeichnungen nach internationalen Spezifikationen.

Alle Angaben ohne Gewähr.

BEZEICHNUNGEN, LIEFERFORMEN, GRENZTEMPERATUREN

Werkstoff- gruppe	Werkstoff-Nr. nach DIN EN 10027	Kurzname nach DIN EN 10027	Kurzname nach DIN (alt)	Halbzeugart	Dokumentation	Obere Grenztem- peratur
						°C
Unlegierter	1.0254	P235TR1	St 37.0	geschweißte Rohre	DIN EN 10217-1	300
Stahl				nahtlose Rohre	DIN EN 10216-1	
	1.0255	P235TR2	St 37.4	geschweißte Rohre	DIN EN 10217-1	
				nahtlose Rohre	DIN EN 10216-1	
	1.0427	C22G1	C 22.3	Flansche	VdTÜV-WB 364	350
Allgemeiner	1.0038	S235JRG2	RSt 37-2	Stabstahl, Flachzeuge,	DIN EN 10025	300
Baustahl	1.0050	E295	St 50-2	Walzdraht Profile	AD W1	
	1.0570	S355J2G3	St 52-3			
Warmfester unlegierter Stahl	1.0460	C22G2	C 22.8	Flansche	VdTÜV-WB 350	450
Warmfester	1.0345	P235GH	HI	Blech	DIN EN 10028-2	480
Stahl				nahtloses Rohr	DIN EN 10216	450
	1.0425	P265GH	HII	Blech	DIN EN 10028-2	480
	1.0481	P295GH	17 Mn 4	Blech	DIN EN 10028-2	500
	1.5415	16Mo3	15 Mo 3	Blech	DIN EN 10028-2	530
				nahtloses Rohr	DIN EN 10216-2	
	1.7335	13CrMo4-5	13 CrMo 4 4	Blech	DIN EN 10028-2	570
				nahtloses Rohr	DIN EN 10216-2	
	1.7380	10CrMo9-10	10 CrMo 9 10	Blech	DIN EN 10028-2	600
				nahtloses Rohr	DIN EN 10216-2	
Feinkorn Baustahl						
normal	1.0562	P355N	StE 355	Blech, Band,	DIN EN 10028-3	
warmfest	1.0565	P355NH	WStE 355	Stabstahl		400
kaltzäh	1.0566	P355NL1	TStE 355			(-50) 1)
Sonder	1.1106	P355NL2	EStE 355			(-60) 1)

¹⁾ untere Grenztemperatur

35GH HI Blech DIN EN 10028-2 480 1.0345 235 360-480 25

FESTIGKEITSKENNWERTE BEI RAUMTEMPERATUR (GEWÄHRLEISTETE WERTE 2)

Werkstoff-Nr. nach DIN EN 10027	Streckgrenze min.	Zugfestigkeit	Bruchdeh	nung min.	Kerbschlagar- beit min. KV ³⁾	Bemerkungen
Dile Ele 10027	R _{eH}	R _m	A ₅	A ₈₀	1	
	MPa	MPa	%	%	J	
1.0254	235	360 - 500	23			s ≤ 16
1.0255	235	360 - 500	23		bei 0 °C: 27	s ≤ 16
1.0427	240	410 - 540	20 (quer)		bei 20 °C: 31	s ≤ 70
1.0038	235	340 - 470	21 - 264)	17 - 21 4)	bei 20 °C: 27	$3 \le s \le 100 (R_m)$
1.0050	295	470 - 610	16 - 20 4)	12 - 16 4)		10 ≤ s ≤ 150 (KV)
1.0570	355	490 - 630	18 - 22 4)	14 - 18 4)	bei -20 °C: 27	s < 16 (R _{eH})
1.0460	240	410 - 540	20		bei 20 °C: 31	s ≤ 70
1.0345	235	360-480	25		bei 0 °C: 27	s ≤ 16
	235	360-500	23		bei 0 °C: 27	s ≤ 16
1.0425	265	410-530	23		bei 0 °C: 27	s ≤ 16
1.0481	295	460-580	22		bei 0 °C: 27	s ≤ 16
1.5415	275	440 - 590	22		bei 20 °C: 31	s ≤ 16
	280	450 - 600	20		bei 20 °C: 27	
1.7335	300	440 - 600	20		bei 20 °C: 31	s ≤ 16
	290	440 - 590			bei 20 °C: 27	
1.7380	310	480 - 630	18		bei 20 °C: 31	s ≤ 16
	280		20		bei 20 °C: 27	
1.0562	355	490-630	22		bei 0 °C: 47	s ≤ 16
1.0565					bei 0 °C: 47	s ≤ 16
1.0566					bei 0 °C: 55	s ≤ 16
1.1106				1	bei 0 °C: 90	s ≤ 16

²⁾ kleinster Wert aus Längs- bzw. Querprobe

17

³⁾ nach DIN EN 10045; Mittelwert aus je 3 Proben bei DIN EN Normen

⁴⁾ abhängig von der Erzeugnisdicke

BEZEICHNUNGEN, LIEFERFORMEN, **GRENZTEMPERATUREN**

Werkstoff- gruppe	Werkstoff-Nr. nach DIN EN 10027	Kurzname nach DIN EN 10027	Halbzeugart	Dokumentation	Obere Grenz- temperatur
					°C
Nichtros-	1.4511	X3CrNb17	Band, Blech	DIN EN 10088	
tender ferritischer				VdTÜV-WB 422	200
Stahl	1.4512	X2CrTi12	Band, Blech	DIN EN 10088	350
				SEW 400	
Nichtros- tender	1.4301	X5CrNi18-10	Band, Blech	DIN EN 10088-2	550 / 300 ⁵⁾
austenitischer Stahl	1.4306	X2CrNi19-11	Band, Blech	DIN EN 10088-2	550 / 350 ⁵⁾
	1.4541	X6CrNiTi18-10	Band, Blech	DIN EN 10088-2	550 / 400 ⁵⁾
	1.4571	X6CrNiMoTi17-12-2	Band, Blech	DIN EN 10088-2	550 / 400 5)
	1.4404	X2CrNiMo17-12-2	Band, Blech	DIN EN 10088-2	550 / 400 ⁵⁾
	1.4435	X2CrNiMo18-14-3	Band, Blech	DIN EN 10088-2	550 / 400 ⁵⁾
	1.4565	X2CrNiMnMoNbN25-18-5-4	Band, Blech	SEW 400	550 / 400 ⁵⁾
	1.4539	X1NiCrMoCu25-20-5	Blech, Band,	DIN EN 10088-2	550 / 400 ⁵⁾
			nahtloses Rohr	VdTÜV-WB 421	400
	1.4529	X1NiCrMoCuN25-20-7	Blech, Band	DIN EN 10088-2	400
			nahtloses Rohr	VdTÜV-WB 502	-
Hoch-	1.4948	X6CrNi18-10	Blech, Band	DIN EN 10028-7	600
warmfester			Schmiedestück	DIN EN 10222-5	
austenitischer Stahl			nahtloses Rohr	DIN EN 10216-5	400 5)
J!!!	1.4958	X5NiCrAlTi31-20	Blech, Band	DIN EN 10028-7	600
			nahtloses Rohr	DIN EN 10216-5	400 5)

⁵⁾ Grenztemperatur bei Gefahr von interkristalliner Korrosion

FESTIGKEITSKENNWERTE BEI RAUMTEMPERATUR (GEWÄHRLEISTETE WERTE 2)

Werkstoff-Nr.	De	hnungs	grenze	Zugfestigkeit	Bruchdeh	nung min.	Kerbschlagarbeit	Bemerkungen
nach DIN EN 10027		min.			> 3 mm	< 3mm	> 10 mm Dicke, quer min.	
		R _{p0,2}	R _{p1,0}	R _m	Dicke A _s	Dicke A ₈₀	KV	
		MPa	MPa	MPa	%	%	J	
1.4511		230		420 - 600		23		s ≤ 6
1.4512		210		380 - 560		25		s ≤ 6
1.4301	q	230	260	540 - 750	45	45	bei 20 °C: 60	s ≤ 6
	Ι	215	245		43	40		
1.4306	q	220	250	520 - 670	45	45	bei 20 °C: 60	s ≤ 6
	Ι	205	235		43	40		
1.4541	q	220	250	520 - 720	40	40	bei 20 °C: 60	s ≤ 6
	Ι	205	235		38	35		
1.4571	q	240	270	540 - 690	40	40	bei 20 °C: 60	s ≤ 6
	Ι	225	255		38	35		
1.4404	q	240	270	530 - 680	40	40	bei 20 °C: 60	s ≤ 6
	Ι	225	255		38	35		
1.4435	q	240	270	550 - 700	40	40	bei 20 °C: 60	s ≤ 6
	Ι	225	255		38	35		
1.4565	q	420	460	800 - 1000	30	25	bei 20 °C: 55	s ≤ 30
1.4539	q	240	270	530 - 730	35	35	bei 20 °C: 60	s ≤ 6
	Ι	225	255		33	30		
		220	250	520 - 720	40	40		
1.4529	q	300	340	650 - 850	40	40	bei 20 °C: 60	s ≤ 50
	ı	285	325		38	35		
		300	340	600 - 800	40	40	bei 20 °C: 84	
1.4948	q	230	260	530 - 740	45	45	bei 20 °C: 60	s ≤ 6
	q	195	230	490 - 690	35		bei 20 °C: 60	s ≤ 250
	q	185	225	500 - 700	30		bei 20 °C: 60	
1.4958	q	170	200	500 - 750	30	30	bei 20 °C: 80	s ≤ 75
	q	170	200	500 - 750	30		bei 20 °C: 80	

²⁾ kleinster Wert aus Längs- bzw. Querprobe

q = Zugprobe, quer

I = Zugprobe, längs

BEZEICHNUNGEN, LIEFERFORMEN, GRENZTEMPERATUREN

Werkstoff- gruppe	Werkstoff-Nr. nach DIN EN 10027 ⁶⁾	Kurzname nach DIN EN 10027	Handelsname	Halbzeugart	Dokumentation	Obere Grenz temperatur
						°C
Hitzebestän- diger Stahl	1.4828	X15CrNiSi20-12		Blech, Band DIN EN 10095 (SEW470)		900
	1.4876	X10NiCrAlTi32-20	INCOLOY 800	Band, Blech, Stab,	SEW470 VdTÜV-WB 412	600
		X10NiCrAlTi32-20 H	INCOLOY 800 H	nahtl. Rohr, Schmiedestück	VdTÜV-WB 434 DIN EN 10095	950 900
Nickelbasis- legierungen	2.4858	NICr21Mo	INCOLOY 825	Band, Blech	DIN 17750 VdTüV-WB 432 DIN 177447)	450
	2.4816	NiCR15Fe	INCONEL 600	Band, Blech	DIN EN 10095 VdTÜV-WB 305	1000 450
			INCONEL 600 H		DIN 17750 VdTÜV-WB 305 DIN 177427)	450
	2.4819	NiMo16Cr15W	HASTELLOY C-276	Band, Blech	DIN 17750 VdTÜV-WB 400 DIN 17744 ⁷⁾	450
	2.4856	NiCr22Mo9Nb	INCONEL 625	Flacherzeug- nisse, Band, Blech	DIN EN 10095 VdTÜV-WB 499	900 450
			INCONEL 625 H		DIN 17750 DIN 17744 ⁷⁾	
	2.4610	NiMo16Cr16Ti	HASTELLOY-C4	Band, Blech	DIN 17750 VdTÜV-WB 424 DIN 17744 ⁷⁾	400
	2.4360	NiCu30Fe	MONEL	Band, Blech Band, Blech, nahtloses Rohr, Schmiedestück	DIN 17750 VdTÜV-WB 263	425

⁶⁾ bei den Nickelbasislegierungen hat für die Werkstoffnummer die DIN 17007 Gültigkeit

FESTIGKEITSKENNWERTE BEI RAUMTEMPERATUR (GEWÄHRLEISTETE WERTE 2)

Werkstoff-Nr. nach DIN EN 10027 ⁶⁾		renzen in.	Zug- festigkeit		ehnung in.	Kerbschlag- arbeit min.	Bemerkungen
DIN LIN 10027	R _{p0,2}	R _{p1,0}	R _m	A ₅	A ₈₀	KV	
	MPa	MPa	MPa	%	%	J	
1.4828	230	270	500 - 750		28		lösungsgeglüht (+AT),
							$s \le 3 \text{ mm}$
1.4876	210		500 - 750	22			weichgeglüht (+A)
	210	240	500 - 750	30		bei 20 °C: 150 8)	
	170	200	450 -700	30			lösungsgeglüht (+AT)
	170	210	450 - 680		28		
2.4858	240	270	≥ 550	30			weichgeglüht (+A), F55,
	235	265	550 - 750		30	bei 20 °C: 80	s ≤ 30 mm
2.4816	240		500 - 850		30		weichgeglüht (+A), F55
	200	230	550 - 750	30		bei 20 °C: 150 8)	
	180	210	≥ 550		30		lösungsgeglüht (+AT), F50
	180	210	500 - 700	35		bei 20 °C: 150 8)	
2.4819	310	330	≥ 690	30			lösungsgeglüht (+AT), F69,
	310	330	730 - 1000	30		bei 20 °C: 96	s ≤ 5 mm
2.4856	415		820 - 1050		30		weichgeglüht (+A), s ≤ 3 mm
	400	440	830 - 1000	30			weichgeglüht (+A)
	275	305	≥ 690		30	bei 20 °C: 100	lösungsgelüht (+AT), F69
2.4610	305	340	≥ 690	40		bei 20 °C: 96	lösungsgeglüht (+AT), s ≤ 5
	280	315	700 - 900	40		bei 20 °C: 96	5 < s ≤ 30
2.4360	175	205	≥ 450	30			weichgeglüht (+A), F45, s ≤ 50
2.1000	175		450 - 600	30		bei 20 °C: 120	weichgeglüht (+A), F45

²⁾ kleinster Wert aus Längs- bzw. Querprobe

⁷⁾ chemische Zusammensetzung

⁶⁾ bei den Nickelbasislegierungen hat für die Werkstoffnummer die DIN 17007 Gültigkeit

⁸⁾ Wert a, in J/cm2

17

BEZEICHNUNGEN, LIEFERFORMEN, GRENZTEMPERATUREN

Werkstoff- gruppe	Werkstoff-Nr.	Kurzname nach	Halbzeugart	Dokumentation	Obere Grenz- temperatur
	nach DII	N EN 1652			°C
Kupferbasis- legierungen	CW354H	CuNi30Mn1Fe	Band, Blech	DIN-EN 1652 AD-W 6/2	350
Kupfer	CW024A	Cu-DHP	Band, Blech	DIN-EN 1652 AD-W 6/2	250
Kupferzinn- legierungen	ngen		Band, Blech	DIN-EN 1652	
Kupferzinkle- gierungen	CW503L	CuZn20	Band, Blech	DIN-EN 1652	
	CW508L	CuZn37	Band, Blech	DIN-EN 1652	
	2.04029)	CuZn40Pb2	Band, Blech	DIN 17670	
	(CW617N)			DIN 17660	
	nach DIM	I EN 485-2			
Aluminium-	EN AW-5754	EN AW-AI Mg3	Band, Blech	DIN EN 485-2	
knetlegie- rungen				DIN EN 575-3	
rungen				AD-W 6/1	150 (AD-W)
	EN AW-6082	EN AW-Al Si1MgMn	Band, Blech	DIN-EN 485-2	
				DIN-EN 573-3	
		IN 17007			
Reinnickel	2.4068	LC-Ni 99	Band, Blech	VdTÜV-WB 345	600
Titan	3.7025	Ti 1	Band, Blech	DIN 17 850	250
				DIN 17 860	
				VdTÜV-WB 230	
Tantal		Ta	Band, Blech	VdTÜV-WB 382	250

⁹⁾ nach DIN 17670

FESTIGKEITSKENNWERTE BEI RAUMTEMPERATUR (GEWÄHRLEISTETE WERTE 2)

Werkstoff-Nr.		renzen in.	Zugfestigkeit	Bruchdehnung min.	Kerbschlag- arbeit min.	Bemerkungen
	R _{p0,2}	R _{p1,0}	R _m	A ₅	KV	
	MPa	MPa	MPa	%	J	
CW354H	≥ 120		350 - 420	35 13)		R350 (F35) ¹¹⁾ 0,3 ≤ s ≤ 15
CW024A	≤ 100		200 - 250	42 13)		R200 (F20) 11) s > 5 mm
	≤ 140		220 - 260	33 14) / 42 13)		R220 (F22) 11) 0,2 ≤ s ≤ 5 mm
CW452K	≤ 300		350 - 420	45 14)		R350 (F35) 11) 0,1 ≤ s ≤ 5 mm
				55 ¹³⁾		
CW503L	≤ 150		270 - 320	38 14)		R270 (F27) 11) 0,2 ≤ s ≤ 5 mm
				48 13)		
CW508L	≤ 180		300 - 370	38 14)		R300 (F30) ¹¹⁾ 0,2 ≤ s ≤ 5 mm
				48 13)		
2.0402	≤ 300		≥ 380	35		- (F38) ¹²⁾ 0,3 ≤ s ≤ 5 mm
EN AW-5754	≥ 80		190 - 240	14 (A50)		0,5 < s ≤ 1,5 mm
						Zustand: 0 / H111
						DIN EN-Werte
EN AW-6082	≤ 85		≤ 150	14 (A50)		0,4 ≤ s ≤ 1,5 mm
						Zustand: 0 ; DIN EN Werte
2.4068	≥ 80	≥ 105	340 - 540	40		
3.7025	≥ 180	≥ 200	290 - 410	30 / 24 15)	62	0,4 < s ≤ 8 mm
TANTAL-ES	≥ 140		≥225	35 ¹⁰⁾		$0,1 \le s \le 5,0$, elektronenstrahl-erschmolzen
TANTAL-GS	≥ 200		≥ 280	30 10)		0,1 ≤ s ≤ 5,0, gesintert im Vakuum

²⁾ kleinster Wert aus Längs- bzw. Querprobe

¹⁰⁾ Meßlänge lo = 25 mm

¹¹⁾ Zustandsbezeichnung nach DIN EN 1652 bzw. (--) nach DIN

¹²⁾ nach DIN, Werkstoff nicht in der DIN EN enthalten

¹³⁾ Angabe in DIN EN für s > 2,5 mm

¹⁴⁾ Bruchdehnung A50, Angabe in DIN EN für s ≤ 2,5 mm

¹⁵⁾ A50 für Dicken ≤ 5 mm

CHEMISCHE ZUSAMMENSETZUNG (MASSENANTEILE IN %)

Werkstoff-	Werk-	Kurzname	C 16)	Si	Mn	Р	S	Cr	Mo	Ni	Sonstige
gruppe	stoff-Nr.	Kuiziiaiiic		max.	IVIII	max.	max.	l G	IVIU	IVI	Elemente
3											
Unlegierter	1.0254	P235TR1	≤ 0,16	0,35	≤ 1,20	0,025	0,020	≤ 0,30	≤ 0,08	≤ 0,30	Cu ≤ 0,30
Stahl											Cr+Cu+Mo+Ni ≤ 0.70
	1.0255	P235TR2	≤ 0,16	0,35	≤ 1,20	0,025	0,020	≤ 0,30	≤ 0,08	≤ 0,30	Cu ≤ 0.30
											Cr+Cu+Mo+Ni ≤ 0.70
											Al _{ges} ≥ 0.02
	1.0427	C22G1	0,18 -	0,15 -	0,4 -	0,035	0,03	≤ 0,30			Alges ≥ 0.015
			0,23	0,35	0,9						
Allgemeiner	1.0038	S235JRG2	≤ 0,17		≤ 1,40	0,045	0,045				N ≤ 0.009
Baustahl	1.0050	E295				0,045	0,045				N ≤ 0.009
	1.0570	S355J2G3	≤ 0,20	0,55	≤ 1,6	0,035	0,035				$AI_{ges} \ge 0.015$
Warmfester	1.0460	C22G2	0,18 -	0,15 -	0,4 -	0,035	0,030	≤ 0,30			
unlegierter			0,23	0,35	0,90						
Stahl											
Warmfester	1.0345	P236GH	≤ 0,16	0,35	0,4 -	0,03	0,025	≤ 0,30	≤ 0,08	≤ 0,30	Nb,Ti,V
Stahl					1,20						Alges ≥ 0.020
	1.0425	P265GH	≤ 0,20	0.4	≤ 0,5	0,03	0,025	< 0.30	≤ 0,08	< 0.30	Cu ≤ 0.30 Cr+Cu+Mo+Ni < 0.70
			,	-,.	,-	-,	-,	,	,	,	CI+CU+IVIO+IVI ≤ 0.70
	1.0481	P295GH	0.08 -	0,40	0.9 -	0.03	0.025	< 0.30	≤ 0.08	≤ 0.30	
			0,20	-,	1,50	-,	-,	,	,	,	
	1.5415	16Mo3	0,12 -	0.35	0.4 -	0.03	0.025	≤ 0,30	0,25 -	≤ 0,30	Cu ≤ 0.3
	1.0410	1011100	0,20	0,00	0.90	0,00	0,020	_ 0,00	0,35		0u ⊇ 0.0
	1.7335	13CrMo4-5	0.08 -	0.35	0.4 -	0.030	0.025	0.7 -	0.4 -		Cu ≤ 0.3
	1.7000	100111104 0	0.18	0,00	1.00	0,000	0,020	1,15	0.6		0u ⊇ 0.0
	1.7380	10 CrMo9-10	0,18	0.5	0.4 -	0.03	0.025	2 -	0,0		Cu ≤ 0.3
	1./300	IO CHVIOS-10	.,	0,0		บ,บ3	0,025		.,.		UU ≤ U.3
	4 0005	DOOFOATU	0,14	0.4	0,80	0.040	0.040	2,50	1,10		
	1.0305	P235G1TH	≤ 0,17	0,1 -	0,4 -	0,040	0,040				
				0,35	0,80						

¹⁶⁾ Der C-Gehalt ist von der Dicke abhängig. Die Werte sind für eine Dicke ≤ 16 mm.

CHEMISCHE ZUSAMMENSETZUNG (MASSENANTEILE IN %)

Werkstoff- gruppe	Werk- stoff-Nr.	Kurzname	C max.	Si max.	Mn	P max.	S max.	Cr	Мо	Ni	Sonstige Elemente
Feinkorn Baustahl	1.0562	P355N	0,2	0,50	0,9 - 1,70	0,03	0,025	≤ 0,3	≤ 0,8	≤ 0,5	Al _{ges} ≥ 0,020 (s, DIN EN 10028-3)
	1.0565	P355NH	0,2	0,50	0,9 - 1,70	0,03	0,025	≤ 0,3	≤ 0,8	≤ 0,5	Cu, N, Nb, Ti, V Nb + Ti + V ≤ 0,12
	1.0566	P355NL1	0,18	0,50	0,90 - 1,70	0,030	0,020	≤ 0,3	≤ 0,8	≤ 0,5	
	1.1106	P355NL2	0,18	0,50	0,9 - 1,70	0,025	0,015	≤ 0,3	≤ 0,8	≤ 0,5	
Nichtros- tender	1.4511	X3CrNb17	0,05	1,00	≤ 1,0	0,040	0,015	16,0 - 18			Nb: 12 x %C - 1,00
ferritischer Stahl	1.4512	X2CrTi12	0,03	1,00	≤ 1,0	0,04	0,015	10,5 - 12,5			Ti: 6 x (C+N) - 0,65
Nichtros- tender aus-	1.4301	X5CrNi18-10	0,07	1,00	≤ 2,0	0,045	0,015	17,0 - 19,5		8,0 - 10,5	
tenitischer Stahl	1.4306	X2CrNi19-11	0,03	1,00	≤ 2,0	0,045	0,015	18,0 - 20,0		10,0 - 12,0	
	1.4541	X6CrNiTi18-10	0,08	1,00	≤ 2,0	0,045	0,015	17,0 - 19,0		9,0 - 12,0	Ti: 5 x % C - 0,7
	1.4571	X6CrNiMoTi 17 12 2	0,08	1,00	≤ 2,0	0,045	0,015	16,5 - 18,5	2 - 2,5	10,5 - 13,5	Ti: 5 x % C - 0,7
	1.4404	X2CrNiMo 17 12 2	0,03	1,00	≤ 2,0	0,045	0,015	16,5 - 18,5	2,0 - 2,5	10,0 - 13,0	N ≤ 0,11
	1.4435	X2CrNiMo 18 14 3	0,03	1,00	≤ 2,0	0,045	0,015	17,0 - 19,0	2,5 - 3,0	12,5 - 15,0	
	1.4565	X2CrNiMnMoNbN2 5-18-5-4	0,04	1,00	4,50 - 6,5	0,030	0,015	21,0 - 25	3,0 - 4,5	15,0 - 18	Nb ≤ 0,30, N: 0,04 - 0,15
	1.4539	X1NiCrMoCu 25-20-5	0,02	0,70	≤ 2,0	0,030	0,010	19,00 - 21	4,0 - 5,0	24,0 - 26,0	Cu: 1,20- 2,00 N: ≤ 0,15
	1.4529	X2NiCrMoCuN 25-20-7	0,02	0,50	≤ 1,0	0,03	0,01	19,0 - 21,0	6,0 - 7,0	24 - 26	Cu: 0,5 - 1 N: 0,15 - 0,25

CHEMISCHE ZUSAMMENSETZUNG (MASSENANTEILE IN %)

Werkstoff-	Werk-	Kurzname	С	Si	Mn	Р	S	Cr	Mo	Ni	Sonstige
gruppe	stoff-Nr.					max.	max.				Elemente
Hochwarm-	1.4948	X6CrNi18-10	0,04 -	≤ 1.00	≤ 2.0	0,035	0,015	17,0 -		8,0 -	
fester aus- tenitischer			0,08					19,0		11,0	
Stahl	1.4919	X6CrNiMo 17-13	0,04 -	≤ 0,75	≤ 2,0	0,035	0,015	16,0 -	2,0 -	12,0 -	
			0,08					18,0	2,5	14,0	
Hitzebestän-	1.4828	X15CrNiSi 20-12	≤ 0,2	1,50	≤ 2,0	0,045	0,015	19,0 -		11,0 -	N: ≤ 0,11
diger Stahl				-2,00				21,0		13,0	
	1.4876	X10NiCrAlTi32-21	≤ 0,12	≤ 1,0	≤ 2,0	0,030	0,015	19,0 -		30,0 -	AI: 0,15 - 0,60
	(DIN EN 10095)	INCOLOY 800H						23,0		34,0	Ti: 0,15 - 0,60
Nickelbasis-	2.4858	NiCr21Mo	≤ 0,025	≤ 0,5	≤ 1,0	0,02	0,015	19,5 -	2,5 -	38,0 -	Ti, Cu, Al,
legierung		INCOLOY 825						23,5	3,5	46,0	Co ≤ 1,0
	2.4816	NiCr15Fe	0,05 -	≤ 0,5	≤ 1,0	0,02	0,015	14,0 -		> 72	Ti, Cu, Al
		INCONEL 600	0,1					17,0			
		INCONEL 600 H									
	2.4819	NiMo16Cr15W	≤ 0,01	0,08	≤ 1,0	0,02	0,015	14,5 -	15 -	Rest	V, Co, Cu, Fe
		HASTELLOY C-276						16,5	17		
	2.4856	NiCr22Mo9Nb	0,03 -	≤ 0,5	≤ 0,5	0,02	0,015	20,0 -	8,0 -	> 58	Ti, Cu, Al
		INCONEL 625	0,1					23,0	10,0		Nb/Ta: 3,15 - 4,15
		INCONEL 625 H									Co ≤ 1,0
	2.4610	NiMo16Cr16Ti	≤ 0,015	≤ 0,08	≤ 1,0	0,025	0,015	14,0 -	14,0 -	Rest	Ti, Cu,
		HASTELLOY C4						18,0	17,0		Co ≤ 2,0
	2.4360	NiCu30Fe	≤ 0,15	≤ 0,5	≤ 2,0		0,02			> 63	Cu: 28 - 34
		MONEL									Ti, Al, Co ≤ 1,0
Kupferbasis-	CW354H	CuNi 30 Mn1 Fe	≤ 0,05		0,5 -		0,050			30,0	Cu: Rest,
legierung		CUNIFER 30			1,50					-32,0	Pb, Zn

CHEMISCHE ZUSAMMENSETZUNG (MASSENANTEILE IN %)

Werkstoff- gruppe	Werk- stoff-Nr.	Kurzname	Cu	Al	Zn	Sn	Pb	Ni	Ti	Та	Sonstige Elemente
Kupfer	CW024A	Cu DHP	≥ 99,9								P: 0,015 - 0,04
Kupferzinn- legierung	CW452K	CuSn 6	Rest		≤ 0,2	5,5 - 7,0	≤ 0,2	≤ 0,2			P: 0,01 - 0,4, Fe: ≤ 0,1
Kupfer- zinklegie-	CW503L	CuZn 20	79,0 - 81,0	≤ 0,02	Rest	≤ 0,1	≤ 0,05				
rung	CW508L	CuZn 37 Messing	62,0 - 64,0	≤ 0,05	Rest	≤ 0,1	≤ 0,1	≤ 0,3			
	2.0402	CuZn 40 Pb 2	57,0 - 59,0	≤ 0,1	Rest	≤ 0,3	1,5 - 2,5	≤ 0,4			
Aluminium- knetlegie-	EN AW- 5754	EN AW-AI Mg3	≤ 0,1	Rest	≤ 0,1				≤ 0,15		Si, Mn, Mg
rung	EN AW- 6082	EN AW-Al Si1MgMn	≤ 0,1	Rest	≤ 0,2				≤ 0,1		Si, Mn, Mg
Reinnickel	2.4068	LC-Ni 99	≤ 0,025					≥ 99	≤ 0,1		$C \le 0.02$ $Mg \le 0.15$ $S \le 0.01$ $Si \le 0.2$
Titan	3.7025	Ti							Rest		$N \le 0.05$ $H \le 0.013$ $C \le 0.06$ $Fe \le 0.15$
Tantal	-	Ta						≤ 0,01	≤ 0,01	Rest	

FESTIGKEITSWERTE BEI ERHÖHTEN **TEMPERATUREN**

Werkstoff-						Festi	gkeitsk	ennwe	erte in	MPa						
Nr. nach	Art des							Tempe	rature	n in °C						
DIN	Kennwertes	RT 17)	100	150	200	250	300	350	400	450	500	550	600	700	800	900
1.0254	R _{p 0,2}	235														
1.0255	R _{p 0,2}	235														
1.0427	R _{p 0,2}	220	210	190	170	150	130	110								
1.0038	R _{p 0,2}	205	187		161	143	122						(We	rte na	ch AD	W1)
1.0570	R _{p 0,2}	315	254		226	206	186						(We	erte na	ch AD	W1)
1.0460	R _{p 0,2}	240	230	210	185	165	145	125	100	80						
	R _{p 1/10000}								136	80	(53)					
	R _{p 1/100000}								95	49	(30)		()=	Werte	bei 48	30 °C
	R _{m 10000}								191	113	(75)		ļ			
	R _{m 100000}								132	69	(42)					
1.0345	R _{p 0,2}	206	190	180	170	150	130	120	110							
	R _{p 1/10000}								136	80	(53)					
	R _{p 1/100000}								95	49	(30)		()-	Worto	bei 48	ก °C
	R _{m 10000}								191	113	(75)		(/ -	WOILG	יוטט דנ	0 0
	R _{m 100000}								132	69	(42)					
	R _{m 200000}								115	57	(33)					
1.0425	R _{p 0,2}	234	215	205	195	175	155	140	130							
	R _{p 1/10000}								136	80	(53)					
	R _{p 1/100000}								95	49	(30)		()-	Morto	bei 48	n ∘c
	R _{m 10000}								191	113	(75)		()-	WEILE	DCI 40	0 6
	R _{m 100000}								132	69	(42)					
	R _{m 200000}								115	57	(33)					
1.0481	R _{p 0,2}	272	250	235	225	205	185	170	155							
	R _{p 1/10000}								167	93	49					
	R _{p 1/100000}								118	59	29					
	R _{m 10000}								243	143	74					
	R _{m 100000}								179	85	41					
	R _{m 200000}								157	70	30					
1.5415	R _{p 0,2}	275	264	250	233	213	194	175	159	147	141					
	R _{p 1/10000}									216	132	(84)				
	R _{p 1/100000}									167	73	(36)	()_	Morto	bei 53	n °c
	R _{m 10000}									298	171	(102)	() -	WEILE	nei Ja	0 6
	R _{m 100000}									239	101	(53)				
	R _{m 200000}									217	84	(45)				
1.7335	R _{p 0,2}				230	220	205	190	180	170	165					
	R _{p 1/10000}]								245	157	(53)	3)			
	R _{p 1/100000}									191	98	(24) () = Werte bei	boi E3	n oc		
	R _{m 10000}									370	239	(76)	()=	vverte	nei 37	U
	R _{m 100000}]								285	137	(33)				
	R _{m 200000}]								260	115	(26)				

17) Raumtemperaturwerte gültig bis 50 °C

FESTIGKEITSWERTE BEI ERHÖHTEN **TEMPERATUREN**

Werkstoff-						Festi	gkeitsk	ennwe	erte in	MPa						
Nr. nach DIN	Art des							Tempe	rature	n in °C						
DIN	Kennwertes	RT 17)	100	150	200	250	300	350	400	450	500	550	600	700	800	900
1.7380	R _{p 0,2}				245	230	220	210	200	190	180					
	R _{p 1/10000}									240	147	83	44			
	R _{p 1/100000}									166	103	49	22			
	R _{m 10000}									306	196	108	61			
	R _{m 100000}									221	135	68	34			
	R _{m 200000}									201	120	58	28			
1.0305	R _{p 0,2}	235			185	165	140	120	110	105						
	R _{p 1/10000}	1							136	80	(53)]			
	R _{p 1/100000}	1							95	49	(30)		1 ,,	\A/	bei 48	n oc
	R _{m 10000}								191	113	(75)		()=	vverte	Del 40	UC
	R _{m 100000}								132	69	(42)					
	R _{m 200000}	1							115	57	(33)		1			
1.0565	R _{p 0,2}	336	304	284	245	226	216	196	167							
1.4511	R _{0.0.2}	230	230	220	205	190	180	165								
1.4512	R _{p 0,2}	210	200	195	190	186	180	160								
1.4301	R _{p 0,2}	215	157	142	127	118	110	104	98	95	92	90				
	R _{p 1}	1	191	172	157	145	135	129	125	122	120	120				
1.4306	R _{0 0.2}	205	147	132	118	108	100	94	89	85	81	80				
	R _{o 1}	1	181	162	147	137	127	121	116	112	109	108				
1.4541	R _{p 0,2}	205	176	167	157	147	136	130	125	121	119	118				
	R _{o 1}	1	208	196	186	177	167	161	156	152	149	147				
1.4571	R _{p 0,2}	225	185	177	167	157	145	140	135	131	129	127				
	R _{o 1}	1	218	206	196	186	175	169	164	160	158	157				
1.4404	R _{0 0.2}	225	166	152	137	127	118	113	108	103	100	98				
	R _{o 1}	1	199	181	167	157	145	139	135	130	128	127				
1.4435	R _{0 0.2}	225	165	150	137	127	119	113	108	103	100	98				
	R _{p 1}	1	200	180	165	153	145	139	135	130	128	127				
1.4565	R _{0.0.2}	420	350	310	270	255	240	225	210	210	210	200				
	R _{n 1}	460	400	355	310	290	270	255	240	240	240	230				
1.4539	R _{0 0.2}	220	205	190	175	160	145	135	125	115	110	105				
	R _{p 1}	1	235	220	205	190	175	165	155	145	140	135				
	R _{m (VdTÜV)}	520	440	420	400	390	380	370	360							
1.4529	R _{0.0.2}	300	230	210	190	180	170	165	160							
	R _{0.1}	340	270	245	225	215	205	195	190							

¹⁷⁾ Raumtemperaturwerte gültig bis 50 °C

FESTIGKEITSWERTE BEI ERHÖHTEN TEMPERATUREN

Werkstoff-				Festigkeitskennwerte in MPa Temperaturen in °C												
Nr. nach	Art des					1 000										
DIN	Kennwertes	RT ¹⁷⁾	100	150	200	250	300	350	400	450	500	550	600	700	800	900
1.4948	R _{0 0.2}	230	157	142	127	117	108	103	98	93	88	83	78			
	R _{o 1}	260	191	172	157	147	137	132	127	122	118	113	108			
	R _m	530	440	410	390	385	375	375	375	370	360	330	300			
	R _{p 1/10000}										147	121	94	35		
	R _{p 1/100000}										114	96	74	22		
	R _{m 10000}										250	191	132	55		
	R _{m 100000}										192	140	89	28		
	R _{m 200000}										176	125	78	22		
1.4919	R _{p 0,2}	205	177		147		127		118		108	103	98			
	R _{p1}	245	211		177		157		147		137	132	128			
	R _{p 1/10000}											180	125	46		
	R _{p 1/100000}											125	85	25		
	R _{m 10000}											250	175	65		
	R _{m 100000}											175	120	34		
1.4958	R _{p 0,2}	170	140	127	115	105	95	90	85	82	80	75	75			
	R _{p 1}	200	160	147	135	125	115	110	105	102	100	95	95			
	R _m	500	465	445	435	425	420	418	415	415	415					
	R _{p 1/10000}												115	58		
	R _{p 1/100000}												(85)	(40)		
	R _{m 10000}	Werte	in Kla	mmerr			ch erwe	eiterte l	Extrapo	olation	290	225	140	69		
	R _{m 100000}				b	estimn	nt				215	160	95	44		
	R _{m 200000}										(196)	(143)	(83)	(38)		
1.4828	R _{p 0,2}	230	205		180		160		150		140		130			
	R _{p1}	270	245		220		205		190		180		170	DIN	I EN 14	917
	R _m	550	470		430		410		400		370		320			
	R _{p 1/1000}												120	50	20	8
	R _{p 1/10000}												80	25	10	4
	R _{m 1000}	1				אוע	I EN 10	1095					190	75	35	15
	R _{m 100000}	-											120 65	36	18	8,5
4 4070	R _{m 100000}	470	440		445		0.5		0.5		- 00			16	7.5	3,0
1.4876	$R_{p0,2}$ R_{p1}	170	140	-	115	_	95		85	-	80	_	75	DIA	LENIAA	017
lösungsge-	R _m	200 450	160 425		135 400		115 390		105 380		100 360		95 300	ווע	I EN 14	91/
glüht (+AT)		450	425		400		390		380		300			70	20	12
	R _{p 1/1000}	-											130 90	70 40	30	13 5
	R _{p 1/10000}	-				DIN	I EN 10	095					200	90	15 45	20
	R _{m 100000}	-											152	68		-
	R _{m 100000}					DIV	I EN 14	017					114	47	30 19	10
2.4858	R _{0 0.2}	235	205	190	180	175	1 EN 14	165	160	155			114	4/	19	4
2.4000	R _{0.1}	265	235	220	205	200	195	190	185	180	-	<u> </u>	-	-	_	-
	R _m	550	530	220	515	200	500	130	490	485						
	lw	JJU	JJU		111		JUU		400	407				1		

FESTIGKEITSWERTE BEI ERHÖHTEN **TEMPERATUREN**

2.4816 DIN EN 10095	Art des Kennwertes R _{p 0,2} R _m	RT ¹⁷⁾ 200 550 -750	100 180 520	150	200			Tempe	rature	n in °C						
2.4816 DIN EN	R _{p 0,2} R _m	200 550	180	150	RT 17) 100 150 200 250 300 350 400 450 500 550 600 700 800											
DIN EN	R _m	550				250	300	350	400	450	500	550	600	700	800	900
	R _{p 0,2}		520		165		155		150	145						
10095		-750	020		500		485		480	475			we	eichgeg	glüht (+	-A)
	lp.	180	170		160		150		150	145			[
	II _m	500	480		460		445		440	435			lösu	ingsge	glüht (-	⊦AT)
		-700														
	R _{p 1/10000}										153		91	43	18	8
	R _{p 1/100000}										126		66	28	12	4
	R _{m 1000}				weich	geglüh	it (+A)						160	96	38	22
	R _{m 10000}										297		138	63	29	13
	R _{m 100000}	L									215		97	42	17	7
2.4819	R _{p0,2}	310	280		240		220		195							
/dTÜV-WB 400	R _{p1}	330	305		275		215		200							
2.4856	R _{p 0,2}	400	350		320		300		280	270				geglüh ÜV-WB		
	R _{p 1/100000}		läeun	acaoali	ibt (. /	T) Ho	ctallar	nanho	n für l	nconel	625 H		250	90	30	10
	R _{m 100000}		losun	yayeyii	unt (+7-	11, 1101	31611616	angabe		IICOIICI	02311		290	135	45	18
	R _{m 1000}				woi	ichgeglüht (+A), DIN EN 10095					260				107	34
	R _{m 10000}					crigog		n, Dili		000				190	63	20
2.4610	R _{p 0,2}	305	285		255		245		225						s < 5	
	R _{p 1}	340	315		285		270		260						0 = 0	
2.4360	R _{p 0,2}	175	150	140	135	132	130	130	130	(130)			()=	Werte	für 42	5 °C
	R _m	450	420	400	390	385	380	375	370	(370)			\ '			_
CW354H	R _{p 1}	140	130	126	123	120	117	112								<u> </u>
	R _{p 1/10000}				107	99	92	84								
	R _{p 1/100000}				102	94	86	78								_
014/0044	K/S ¹⁸⁾	- 00	93	87	84	82	80	78	75							_
CW024A AD-W 6/2	R _{p 1}	60 200	55 200	55 175	150	125								7	חטטם ג	,
ND-44 0/2	R _m K/S ¹⁸⁾	57	57	50	43	36								Zustan	a KZUL	
				58	43	3b										
	R _{p 1}	65 220	58 220	195	170	145								7ustan	4 0220	,
	R _m K/S ¹⁸⁾	63	63	195 56		41								Lustan	u KZZL	
		ხა	58	53	49 46	37	_									
	R _{p 2/10000}		58 56	49	46	37							Zust	and R2	200 + F	1220
EN-AW	R _{p 2/100000}	80	70	49	40	30										
5754	R _{p 0,2} R _{m 100000}	OU	(80)	45												

¹⁷⁾ Raumtemperaturwerte gültig bis 50 °C

556 WITZENMANN 1501de/19/10/23/pdf (HYDRA®) (HYDRA®)

WITZENMANN 557 1501de/19/10/23/pdf

¹⁸⁾ K/S = Zulässige Spannung nach AD-W 6/2 für 105 h

¹⁷⁾ Raumtemperaturwerte gültig bis 50 °C

FESTIGKEITSWERTE BEI ERHÖHTEN TEMPERATUREN

Werkstoff-						Festi	gkeitsk	ennwe	rte in	MPa						
Nr. nach	Art des							Tempe	raturei	n in °C						
DIN	Kennwertes	RT 17)	100	150	200	250	300	350	400	450	500	550	600	700	800	900
2.4068	R _{p 0,2}	80	70		65		60		55		50		40			
Nickel	R_{p1}	105	95		90		85		80		75		65			
	R _m	340	290		275		260		240		210		150			
	R _{p 1/10000}								75	55	35	19	10			
	R _{p 1/100000}							85	60	40	23	11	6			
3.7025	R _{p1}	200	180	150	110	90										
Titan	R _{m 10000}	220	160	150	130	110							Tantal-ES elektronenstrahler- schmolzen Tantal-GS gesintert im Vakuum			
	R _{m 100000}	200	145	130	120	90										
Tantal	R _{p 0,2}	140	100	90	80	70										
	R _m	225	200	185	175	160	150							er-		
	A 30[%]	35														
	R _{p 0,2}	200	160	150	140	130										
	R _m	280	270	260	240	230								um		
	A 30[%]	25												iuiii		

¹⁷⁾ Raumtemperaturwerte gültig bis 50 °C

17

М

WERKSTOFFBEZEICHNUNGEN NACH INTERNATIONALEN SPEZIFIKATIONEN

Werkstoff-		U	SA		Jap	oan
Nr. nach DIN EN	Norm	UNS Kurzname	Halbzeugart/Einsatzge- biet/Titel	Norm	Kurzname	Halbzeugart/Einsatzge- biet/ Titel
1.0254	ASTM A 53	K02504 Grade A, type S	Geschweißte und nahtlose schwarzoxidierte und feuerverzinkte Stahlrohre	JIS G 3445	STKM12A	Rohr für Maschinenbau
	ASTM A 519	K02504 Grade 1020	Rohr, nahtlos	JIS G 3454	STPG370	Rohr für Druckbehälter
	ASTM A 523	K02504 Grade B	Rohr, nahtlos, wieder- standsgeschweißt	JIS G 3457	STPY400	Rohr, geschweißt
1.0255	ASTM A106	Grade A	Rohr, nahtlos warmfest	JIS G 3455	STS 370	Rohr für Druckbehälter
1.0038	ASTM A 500	K03000	Geschweißte und nahtlose Formstücke aus kaltge- formtem unlegiertem Stahl			
1.0050	ASTM A 573	Grade 70	Blech mit verbesserter Zähigkeit	JIS G 3101	SS490	Allgemeine Baustähle
1.0570	ASTM A105		Schmiedestück für Rohrleitungen	JIS G 3106	SM490YB	Stähle für Schweißkonst- ruktionen
	ASTM A 662	Grade C	Blech für Druckbehälter	JIS G 3106	SM520B	Stähle für Schweißkonst- ruktionen
1.0345	ASTM A 414	K02201 Grade A	Blech für Druckbehälter	JIS G 3115	SPV450	Blech für Druckbehälter
1.0425	ASTM A 414	K02505 Grade D	Blech für Druckbehälter	JIS G 3115	SPV355	Blech für Druckbehälter
1.0481	ASTM A 414	K02704 Grade F	Blech für Druckbehälter	JIS G 3118	SGV410	Blech für Druckbehälter
1.5415	ASTM A 204	K12320 Grade A	Blech für Druckbehälter	JIS G 3458	STPA12	Rohre
1.7335	ASTM A 387	K11789 Grade 12	Blech aus Cr-Mo-legiertem Stahl für Druckkessel	JIS G 3462	STBA22	Kessel- und Wärmetau- scherrohre
1.7380	ASTM A 387	K21590 Grade 22	Blech aus Cr-Mo-legiertem Stahl für Druckkessel	JIS G 4109	SCMV4	Blech für Druckbehälter
1.0305	ASTM A 106	K02501 Grade A	Rohr, nahtlos, warmfest	JIS G 3461	STB340	Rohr, Kesselrohr
1.0562	ASTM A 299	K02803 Grade A	Blech für Druckbehälter	JIS G 3106	SM490 A;B;C	Stähle für Schweißkonst- ruktionen
	ASTM A 714	K12609 Grade II	Geschweißte und nahtlose Rohre aus hochfestem niedriglegiertem Stahl	JIS G 3444	STK490	Rohre für allgemeine Verwendung
1.0565	ASTM A 633	K12037 Grade D	Blech, hochfest			
	ASTM A 662	K12037 Grade C	Blech für Druckbehälter			
1.0566	ASTM A 662	K02701 Grade C	Blech für Druckbehälter	JIS G 3126	SLA365	Blech für Druckbehälter, kaltzäh

WERKSTOFFBEZEICHNUNGEN NACH INTERNATIONALEN SPEZIFIKATIONEN

Werkstoff-		Ko	rea		Ch	ina
Nr. nach DIN EN	Norm	Kurzname	Halbzeugart/Einsatzge- biet/Titel	Norm	Kurzname	Halbzeugart/Einsatzge- biet/ Titel
1.0254	KS D 3583	SPW 400	Geschweißte Rohre aus Kohlenstoffstahl			
1.0255	KS D 3562	SPPS 410	Kohlenstoffstahl, Leitungen für Hochdruckanwen- dungen	GB/T 5312	410	Rohr, nahtlos für Schiffsbau
1.0038				GB/T 700	0235B U12355	(Unlegierte Baustähle)
1.0050	KS D 3503	SS 490	Allgemeine Baustähle	GB/T 700	0275 U12752	(Unlegierte Baustähle)
1.0570	KS D 3517	STKM 16C	Unlegierte Stahlrohre für allgemeinen Maschi-	GB 6654	16MnR L20162	Blech für Druckbehälter
			nenbau	GB/T 8164	16Mn L20166	Band für geschweißte Rohre
1.0345	KS D 3521	SPPV 450	Grobbleche für Druckgefäße für mittlere Einsatztemperaturen	GB 6654	20R	Blech für Druckbehälter
1.0425	KS D 3521	SPPV 315	Grobbleche für Druckgefäße für mittlere Einsatztemperaturen	GB/T 713	22Mng	Stahlbleche für Kessel und Druckbehälter
1.0481			·			
1.5415	KS D 3572	STHA 12	Rohre für Kessel und Wärmetauscher	GB 5310	15MoG A65158	Nahtlose Rohre für Druckbehälter
1.7335	KS D 3572	STHA 22	Rohre für Kessel und Wärmetauscher	YB/T 5132	12CrMo A30122	Bleche aus legierten Baustählen
1.7380	KS D 3543	SCMV 4	Cr-Mo-Stahl für Druck- gefäße	GB 5310	12Cr2MoG A30138	Nahtlose Rohre für Druckbehälter
1.0305				GB/T 5312	360	Rohr, nahtlos für Schiffsbau
1.0562						
1.0565						
1.0566	KS D 3541	SLA 1 360	Grobbleche für Druckgefä- ße (kaltzäh)	GB/T 714	Q420q-D L14204	Stähle für den Brückenbau

1501de/19/10/23/pdf 560 WITZENMANN (HYDRA®) (HYDRA®) 1501de/19/10/23/pdf WITZENMANN 561

WERKSTOFFBEZEICHNUNGEN NACH INTERNATIONALEN SPEZIFIKATIONEN

Werkstoff-		U	SA		Jap	an
Nr. nach DIN EN	Norm	UNS Kurzname	Halbzeugart/Einsatzge- biet/Titel	Norm	Kurzname	Halbzeugart/Einsatzge- biet/ Titel
1.1106	ASTM A 707	K12510 Grade L3	Geschmiedete Flansche aus legiertem und unlegier- tem Stahl für den Einsatz bei niedrigen Temperaturen	JIS G 3444	STK490	Rohre für allgemeine Verwendung
1.4511				JIS G 4305	SUS430LX	Kaltgewalzte Bleche, Grobbleche und Band
1.4512	ASTM A 240	\$40900 409	Blech und Band aus hitzebeständigem nichtros- tendem Cr- und Cr-Ni-Stahl für Druckkessel	JIS G 4312	SUH409L	Blech, nichtrostend, hitzebeständig
1.4301	ASTM A 240	\$30400 304	Blech und Band aus hitzebeständigem nichtros- tendem Cr- und Cr-Ni-Stahl für Druckkessel	JIS G 4305	SUS304	Kaltgewalzte Bleche, Grobbleche und Band
1.4306	ASTM A 240	S30403 304L	Blech und Band aus hitzebeständigem nichtros- tendem Cr- und Cr-Ni-Stahl für Druckkessel	JIS G 4305	SUS304L	Kaltgewalzte Bleche, Grobbleche und Band
1.4541	ASTM A 240	S32100 321	Blech und Band aus hitzebeständigem nichtros- tendem Cr- und Cr-Ni-Stahl für Druckkessel	JIS G 4305	SUS321	Kaltgewalzte Bleche, Grobbleche und Band
1.4571	ASTM A 240	S31635 316Ti	Blech und Band aus hitzebeständigem nichtros- tendem Cr- und Cr-Ni-Stahl für Druckkessel	JIS G 4305	SUS316Ti	Kaltgewalzte Bleche, Grobbleche und Band
1.4404	ASTM A 240	S31603 316L	Blech und Band aus hitzebeständigem nichtros- tendem Cr- und Cr-Ni-Stahl für Druckkessel	JIS G 4305	SUS316L	Kaltgewalzte Bleche, Grobbleche und Band
1.4435	ASTM A 240	S31603 316L	Blech und Band aus hitzebeständigem nichtros- tendem Cr- und Cr-Ni-Stahl für Druckkessel	JIS G 4305	SUS316L	Kaltgewalzte Bleche, Grobbleche und Band
1.4565	ASTM A 240	S34565	Blech und Band aus hitzebeständigem nichtros- tendem Cr- und Cr-Ni-Stahl für Druckkessel			
1.4539	ASTM A 240	N08904 904L	Blech und Band aus hitzebeständigem nichtros- tendem Cr- und Cr-Ni-Stahl für Druckkessel	JIS G 4305	SUS890L	Kaltgewalzte Bleche, Grobbleche und Band
1.4529	ASTM A 240	N08925	Blech und Band aus hitzebeständigem nichtros- tendem Cr- und Cr-Ni-Stahl für Druckkessel			

WERKSTOFFBEZEICHNUNGEN NACH INTERNATIONALEN SPEZIFIKATIONEN

Werkstoff-		Ko	rea		China	
Nr. nach DIN EN	Norm	Kurzname	Halbzeugart/Einsatzge- biet/Titel	Norm	Kurzname	Halbzeugart/Einsatzge- biet/ Titel
1.1106				GB 6654	16MnR L20163	Blech für Druckbehälter
1.4511	KS D 3698	STS 430LX	Kaltgewalzte Bleche, Grobbleche und Band			
1.4512				GB /T 3280	022Cr11NbTi S11168	Warmgewalzte Bleche aus hitzebeständigem Stahl; ferritisch
1.4301	KS D 3698	STS 304	Kaltgewalzte Bleche, Grobbleche und Band	GB /T 3280	06Cr19Ni10 S30408	Kaltgewalzte Bleche und Bänder; austenitisch
1.4306	KS D 3698	STS 304L	Kaltgewalzte Bleche, Grobbleche und Band	GB /T 3280	022Cr19Ni10 S30403	Kaltgewalzte Bleche und Bänder; austenitisch
1.4541	KS D 3698	STS 321	Kaltgewalzte Bleche, Grobbleche und Band	GB /T 3280	06Cr18Ni11Ti S32168	Kaltgewalzte Bleche und Bänder; austenitisch
1.4571	KS D 3698	STS 316Ti	Kaltgewalzte Bleche, Grobbleche und Band	GB /T 3280	06Cr17Ni12Mo2Ti S31668	Kaltgewalzte Bleche und Bänder; austenitisch
1.4404	KS D 3698	STS 316L	Kaltgewalzte Bleche, Grobbleche und Band	GB /T 3280	022Cr17Ni12Mo2 S31603	Kaltgewalztes Blech und Band; austenitisch
1.4435	KS D 3698	STS 316L	Kaltgewalzte Bleche, Grobbleche und Band	GB /T 3280	022Cr17Ni12Mo2 S31603	Kaltgewalzte Bleche und Bänder; austenitisch
1.4565				GB /T 3280	022Cr24Ni17Mo5M- n6NbN	Kaltgewalzte Bleche und Bänder; austenitisch
1.4539				GB /T 3280	015Cr21Ni26Mo- 5Cu2	Kaltgewalzte Bleche und Bänder; austenitisch
1.4529	KS D 3698	STS 317J5L	Kaltgewalzte Bleche, Grobbleche und Band			

Werkstoff-		U	SA		Ja	pan
Nr. nach DIN EN	Norm	UNS Kurzname	Halbzeugart/Einsatzge- biet/Titel	Norm	Kurzname	Halbzeugart/Einsatzge- biet/ Titel
1.4948	ASTM A 240	\$30409 304H	Blech und Band aus hitzebeständigem nichtros- tendem Cr- und Cr-Ni-Stahl für Druckkessel			
1.4919	ASTM A 240	S31609 316H	Blech und Band aus hitzebeständigem nichtros- tendem Cr- und Cr-Ni-Stahl für Druckkessel			
1.4958	ASTM A 240	N08810	Blech und Band aus hitzebeständigem nichtros- tendem Cr- und Cr-Ni-Stahl für Druckkessel			
1.4828	ASTM A 167	\$30900 309	Blech und Band aus nichtrostendem hitzebe- ständigem Cr-Ni-Stahl	JIS G 4312	SUH309	Hitzebeständige Bleche und Grobbleche
1.4876	ASTM A 240	N08800 800H	Blech und Band aus hitzebeständigem nichtros- tendem Cr- und Cr-Ni-Stahl für Druckkessel	JIS G 4902	NCF800	Sonderlegierung in Blechen
2.4858	ASTM B 424	N08825	Bleche und Bänder aus Ni-Fe-Cr-Mo-Cu-Legie- rungen (UNS N08825 und N08221)	JIS G 4902	NCF825	Sonderlegierung in Blechen
2.4816	ASTM B 168	N06600	Bleche und Bänder aus Ni-Cr-Fe, und Ni-Cr-Co-Mo- Legierungen (UNS N06600 und N06690)			
2.4819	ASTM B 575	N10276	Bleche und Bänder aus kohlenstoffarmen Ni-Mo-Cr-Legierungen			
2.4856	ASTM B 443	N06625	Bleche und Bänder aus Ni-Cr-Mo-Nb-Legierung (UNS N06625)	JIS G 4902	NCF625	Sonderlegierung in Blechen
2.4610	ASTM B 575	N06455	Bleche und Bänder aus kohlenstoffarmen Ni-Mo-Cr-Legierungen			
2.4360	ASTM B 127	N04400	Bleche und Bänder aus Ni-Cu-Legierung (UNS N04400)	JIS H 4551	NW4400	Bleche und Streifen aus Nickel und Nickellegierung

WERKSTOFFBEZEICHNUNGEN NACH INTERNATIONALEN SPEZIFIKATIONEN

Werkstoff-		Ко	rea	China								
Nr. nach DIN EN	Norm	Kurzname	Halbzeugart/Einsatzge- biet/Titel	Norm	Kurzname	Halbzeugart/Einsatzge- biet/ Titel						
1.4948				GB /T 3280	07Cr19Ni10	Kaltgewalzte Bleche und Bänder; austenitisch						
1.4919												
1.4958												
1.4828	KS D 3732	STR 309	Hitzebeständige Bleche und Grobbleche	GB/T 4238	16Cr23Ni13 S38210	Hitzebeständige Stähle; austenitisch						
1.4876	KS D 3532	NCF 800	Sonderlegierungen in Blechen und Grobblechen	GB/T 15007	NS 111 H01110	Rostbeständige Legierungen						
2.4858	KS D 3532	NCF 825	Sonderlegierungen in Blechen und Grobblechen	GB/T 15007	NS 142 H01402	Rostbeständige Legierungen						
2.4816				GB/T 15007	NS 3102 H06600	Rostbeständige Legierungen						
2.4819				GB/T 15007	NS 3304 H10276	Rostbeständige Legierungen						
2.4856	KS D 3532	NCF 625	Sonderlegierungen in Blechen und Grobblechen	GB/T 15007	NS 3306 H06625	Rostbeständige Legierungen						
2.4610				GB/T 15007	NS 3305 H06455	Rostbeständige Legierungen						
2.4360				GB/T 15007	NS6400 H04400	Rostbeständige Legierungen						

Grundsätzliches

Flexible metallische Bauteile sind grundsätzlich für den Transport von kritischen Flüssigkeiten geeignet, wenn eine hinreichende Beständigkeit gegen alle Medien gesichert ist, welche während der gesamten Lebensdauer vorkommen. Die Beweglichkeit von gewellten Bauteilen wie Bälgen oder gewellten Schläuchen erfordert grundsätzlich eine beträchtlich geringere Wanddicke als bei allen anderen Teilen des Systems, in welchem sie installiert sind. Da deshalb das Vergrößern der Wanddicke, um Schäden durch Korrosion zu vermeiden, nicht möglich ist, wird es unerlässlich einen passenden Werkstoff für flexible Elemente zu wählen, welcher ausreichend beständig ist. Besonders beachtet werden müssen alle möglichen Arten der Korrosion, insbesondere Lochkorrosion, interkristalline Korrosion, Spaltkorrosion und Spannungsrisskorrosion (s. Korrosionsarten). Dies führt zu der Tatsache, dass in vielen Fällen zumindest für die Lage des flexiblen Elements, welche dem korrosiven Medium ausgesetzt ist, sogar ein Werkstoff mit einer höheren Korrosionsbeständigkeit ausgewählt werden muss als der von den Systemteilen, mit welchen es verbunden ist (siehe nachfolgende Beständigkeitstabellen).

Korrosionsarten

Korrosion ist nach DIN EN ISO 8044 die "physikochemische Wechselwirkung zwischen einem Metall und seiner Umgebung, die zu einer Veränderung der Eigenschaften des Metalls führt und die zu einer erheblichen Beeinträchtigung der Funktion des Metalls, der Umgebung oder des technischen Systems, von dem diese ein Teil bilden, führen kann. Diese Wechselwirkung ist oft elektrochemischer Natur". Je nach Werkstoff und Korrosionsbedingungen können unterschiedliche Korrosionsarten auftreten. Im Folgenden sind die wichtigsten Korrosionsarten der Eisen- und Nichteisenmetalle kurz beschrieben.

Gleichmäßige Flächenkorrosion

Allgemeine Korrosion, die mit nahezu gleicher Geschwindigkeit über die gesamte Oberfläche abläuft. Der dabei auftretende Gewichtsverlust wird in der Regel in g/m²h oder als Wanddickenreduktion in mm/Jahr angegeben. Zu dieser Korrosion zählt die übliche Rostbildung beim unlegierten Stahl, welche im Allgemeinen durch Oxidation in der Gegenwart von Wasser hervorgerufen wird. Bei den nichtrostenden Stählen ist gleichmäßige Korrosion nur unter besonders ungünstigen Bedingungen möglich, z. B. hervorgerufen durch Flüssigkeiten wie Säuren, Basen und Salzlösungen.

Unter bestimmten Bedingungen treten örtlich begrenzte Angriffe auf, die wegen ihres Aussehens als Lochkorrosion bezeichnet werden. Der Angriff erfolgt bei Einwirkung von Chlor-, Brom- oder Jod-Ionen, insbesondere bei deren Anwesenheit in wässrigen Lösungen. Diese Korrosionsform bzw. der dabei auftretende selektive Angriff ist im Vergleich zur Flächenkorrosion nicht kalkulierbar und aus diesem Grunde nur durch eine geeignete Werkstoffwahl zu beherrschen Bei nichtrostenden Stählen steigt die Beständigkeit gegenüber Lochkorrosion mit Zunahme des Molybdängehalts in der chemischen Zusammensetzung des Werkstoffs. Überschlägig kann man mit der sogenannten Wirksumme $(WS = Cr \% + 3.3 \cdot Mo \% + 30 N \%)$ die Beständigkeit von Werkstoffen gegenüber Lochkorrosion vergleichen; je höher die Wirksumme, desto besser die Beständigkeit.

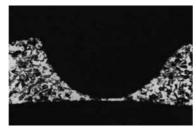


Bild 18.1 Lochkorrosion am Kaltband aus austentischem Stahl, Schnittbild (50-fache Vergrößerung)

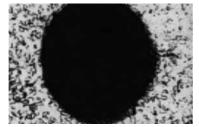


Bild 18.2 Schnittbild (50-fache Vergrößerung)

Interkristalline Korrosion

Die interkristalline Korrosion ist eine örtliche selektive Korrosion, bei der bevorzugt die Korngrenzen angegriffen werden. Ursache dieser Korrosionsart sind Ausscheidungen im Werkstoffgefüge, die an den korngrenzennahen Bereichen zu einer Verminderung der Korrosionsbeständigkeit führen. Diese Korrosionsform kann bei nichtrostenden Stählen zu einer Auflösung des Kornverbunds (Kornzerfall) fortschreiten.

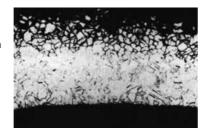


Bild 18.3 Interkristalline Korrosion (Kornzerfall) am Werkstoff 1.4828. Schnittbild (100-fache Vergrößerung)

Bei den CrNi-Stählen sind diese Ausscheidungsvorgänge temperatur- und zeitabhängig, wobei der kritische Temperaturbereich zwischen 550 und 650 °C liegt und die Zeitdauer bis zum Einsetzen der Ausscheidungsvorgänge je nach Stahlsorte unterschiedlich lang ist. Das muss unter anderem beim Verschweißen von dickwandigen Teilen mit großer Wärmekapazität beachtet werden. Diese ausscheidungsbedingten Gefügeveränderungen lassen sich durch eine Lösungsglühbehandlung (1000-1050 °C) rückgängig machen. Zur Vermeidung dieser Korrosionsart werden nichtrostende Stähle mit niedrigem Kohlenstoffgehalt (≤ 0.03% C) oder mit Stabilisierungselementen wie Titan oder Niob eingesetzt. Für unsere Erzeugnisse aus nichtrostenden Stählen werden stabilisierte (z. B. 1.4541, 1.4571) oder Low-carbon-Werkstoffe (z. B. 1.4404, 1.4306) verwendet. Die Anfälligkeit von Werkstoffen gegenüber interkristalliner Korrosion kann durch den genormten Test (Monypenny-Strauss-Test nach DIN EN ISO 3651-2) nachgewiesen werden. Unsere Bestell- und Abnahmevorschriften fordern den Nachweis der IK-Beständigkeit der Werkstoffe nach obiger Norm durch den Werkstoff-Lieferanten.

Spannungsrisskorrosion

Diese Art der Korrosion wird besonders bei austenitischen Werkstoffen beobachtet, die mit inneren oder äußeren Zug-Spannungen behaftet einem Korrosionsmedium ausgesetzt sind. Als korrosionsauslösende Medien sind vor allem chlorhaltige sowie alkalische Lösungen zu nennen. Der Rissverlauf kann transkristallin oder interkristallin sein. Während die transkristallin verlaufende Form nur oberhalb von 50 °C (bevorzugt bei chlorhaltigen Lösungen) auftritt, wird die interkristalline Form bei austenitischen Werkstoffen in chloridhaltigen neutralen Lösungen schon bei Raumtemperatur festgestellt.

Spaltkorrosion

Wegen der Gefahr von Spaltkorrosion sind Konstruktionen und Einsatzfälle zu vermeiden, die Spalte darstellen oder Ablagerungen begünstigen, da unter Ablagerungen die Gefahr von Korrosion / Spaltkorrosion gegeben ist.

Die Beständigkeit der hochlegierten Stähle und Ni-Basislegierungen gegenüber dieser Korrosionsart wird mit steigendem Molybdängehalt dieser Werkstoffe verbessert; wie bei der Lochkorrosion kann auch bei der Spaltkorrosion die Wirksumme (siehe Lochkorrosion) als Kriterium zur Beurteilung der Korrosionsbeständigkeit herangezogen werden.

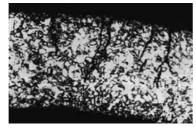


Bild 18.4 Transkristalline Spannungrisskorrosion an Kaltband aus austenitischem Stahl. Schnittbild (50-fache Vergrößerung)

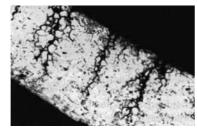


Bild 18.5 Interkristalline Spannungsrisskorrosion an Kaltband aus austenitischem Stahl. Schnittbild (50-fache Vergrößerung)

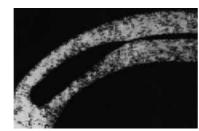


Bild 18.6 Spaltkorrosion an einem Kaltband aus austenitischem Stahl. Schnittbild (50-fache Vergrößerung)

Entzinkung

Die Entzinkung ist eine Korrosionsart, die vor allem bei Kupfer-Zink-Legierungen mit mehr als 20 % Zink auftritt. Bei dem Korrosionsvorgang scheidet sich das Kupfer aus dem Messing als meist schwammige Masse ab. Das Zink bleibt entweder in Lösung oder scheidet sich in Form von basischen Salzen über der Korrosionsstelle ab. Die Entzinkung kann sowohl flächig ausgebreitet als auch örtlich begrenzt und in die Tiefe gehend auftreten. Voraussetzung für die Entstehung dieser Korrosionsart bieten dickere Deckschichten aus Korrosionsprodukten, Kalkablagerungen aus dem Wasser oder sonstige Ablagerungen von Fremdteilen auf der Metalloberfläche. Wasser bei erhöhten Temperaturen, bei erhöhtem Chloridgehalt und bei niedrigen Strömungsgeschwindigkeiten begünstigt das Auftreten von Entzinkung.

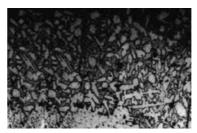


Bild 18.7 Entzinkung an einer Kupfer-Zink-Legierung (CuZn37). Schnittbild (100-fache Vergrößerung)

Kontaktkorrosion

Als Kontaktkorrosion bezeichnet man die Korrosion, die bei der Kombination von unterschiedlichen Werkstoffen entstehen kann. Zur Beurteilung der Gefahr von Kontaktkorrosion werden in der Praxis sogenannte "Praktische Spannungsreihen", z.B. in Meerwasser, herangezogen. Metalle, die in dieser Darstellung nahe beieinander liegen, sind miteinander verträglich, bei größerem Abstand wird das anodische Metall verstärkt korrodieren

Korrosionsbeständigkeit

Zu beachten sind auch Werkstoffe, die sowohl im aktiven als auch im passiven Zustand auftreten können. Eine Aktivierung eines CrNi-Stahls z.B. kann durch mechanische Beschädigung der Oberfläche, durch Ablagerungen (erschwerte Sauerstoffdiffusion) oder durch Korrosionsprodukte auf der Werkstoffoberfläche hervorgerufen werden. Dadurch kann es zwischen der aktiven und der passiven Metalloberfläche zu einer Potentialdifferenz und bei vorhandenem Elektrolyt zum Materialabtrag (Korrosion) kommen.

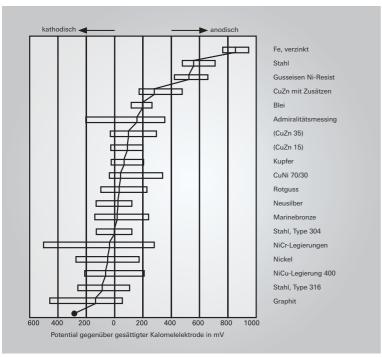


Bild 18.9 Galvanische Spannungsreihe in Meerwasser

Ouelle: DECHEMA-Werkstofftabellen

BESTÄNDIGKEITSTABELLEN

Die folgenden Tabellen geben einen Überblick über die Beständigkeit der gängigsten, für unsere Produkte eingesetzten, metallischen Werkstoffe verschiedenen Medien gegenüber.

Die Tabellen wurden auf der Basis einschlägiger, dem Stand der Technik entsprechender Quellen erstellt; sie erhebt keinen Anspruch auf Vollständigkeit. Die Angaben stellen Empfehlungen dar, für die keine Garantie übernommen werden kann.

Sie sollte dem Anwender in erster Linie Hinweise darauf geben, welche Werkstoffe für den geplanten Einsatz geeignet oder bedingt geeignet sind und welche von vornherein ausscheiden. Unsicherheiten hinsichtlich der genauen Zusammensetzung des Betriebsmediums, unterschiedliche Betriebszustände und die sonstigen betrieblichen Rahmenbedingungen sind dabei zu beachten.

Tabellenschlüssel

Bewertung	Korrosionsverhalten	Eignung
0	beständig	geeignet
1	abtragende Korrosion mit Dickenabnahme bis zu 1 mm/Jahr	bedingt geeignet
L	Gefahr von Lochkorrosion	
S	Gefahr von Spannungsrisskorrosion	
2	kaum beständig, abtragende Korrosion mit Dickenabnahme über 1 mm bis 10 mm/Jahr	nicht verwendbar
3	unbeständig (Korrosionsform unterschiedlich)	ungeeignet

Erläuterung der Abkürzungen

fe: feuchter Zustand

hg: heißgesättigt (im Siedepunkt) kg: kaltgesättigt (Raumtemperatur)

Schm: Schmelze
SP: Siedepunkt
STP: Säuretaupunkt
tr: trockener Zustand
wl: wässrige Lösung

10

Medium											٧	Verk	stoff	е							
Bezeichnung Chemische Formel				Stähle	nicht rostende Stähle			Nickelbasis- Legierungen					Kupferbasis- Legierungen								
		Konzentration	Temperatur	Inlegierte und niedriglegierte Stähle	ferritische	austenitische	austenitische + Mo	Incoloy 825 2.4858	Inconel 600 2.4816	Inconel 625 2.4856	Hastelloy-C 2.4610 / 2.4819	Monel 2.4360	Cunifer 30 2.0882	Tombak	92	fer	kel	_	tal	Aluminium	er
		%	°C	등	ferr	ans	ans	li Li	li c	luc Luc	Has	§ Mg	D U	Toll	Bronze	Kupfer	Nickel	Titan	Tantal	Alu	Silber
Abgase																					
s. Verbrennungsgase																					
Acetaldehyd		100	SP	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CH ₃ - CHO				_		_							_		_		_		_		
Acetanilid			<114	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0
= Antifebrin																					
Aceton		100	SP	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CH ₃ COCH ₃			00	_	_		_	_	_		_	_			_	_				_	
Acetylchlorid			20	1	1	1	1	1	1	0	0	1	1		1	1	1		0	1	0
CH₃COCI			20	0	0	0	0	0	0	0	0	0	3	3	3	3	0	0	0	0	3
Acetylen H-C=C-H	tr		200	1	0	0	0	0	0	0	0	0	3	3	3	3	3	0	0	1	-
Acetylendichlorid	tr wl	5	200	-	U	U	U	U	U	U	U	U	3	٥	3	3	J	U	U	1	3
H ₂ C=CCl ₂	tr	100	20	0	L	L	L	0	0	0		0					0			0	
Acetylentetrachlorid	u	100	20	U	-	L	L	U	U	U		U					U			U	
CHCL ₂ - CHCL ₂ s. Tetrachloräthan																					
Adipinsäure		alle	200	0	0	0	0	0	0	0	0	0				_	0	0	0	0	0
HOOC(CH ₂) ₄ COOH		alle	200	0	١	١	"	"	U	"	U	"					0	١	"	١	١ ا
Äthan			20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CH ₃ - CH ₃			20	"	"	"	"	"	"	"	"	"	0	"	"	"	"	"	"	"	"
Äther				\vdash	\vdash		\vdash	\vdash				\vdash		\vdash		\vdash	\vdash	\vdash		 	
(C ₂ H ₅) ₂ O																					
s. Äthyläther																					
Ätherische Öle			20	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ätyläther			0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	Ė
(C ₂ H ₅) ₂ O																					
Äthylalkohol		alle	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
C₂H₅OH		alle	SP	1	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0
Äthylbenzol				1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$C_6H_5 - C_2H_5$				İ									İ								
Äthylchlorid			0	S	S	S	0	0	0	1	0	0	1	1	1	0		0	1	0	
C ₂ H ₅ CI																					

Medium				Werkstoffe																
Bezeichnung Chemische Formel				nich					asis-			ferba			Re	ine I	Vleta	lle		
			ähle	rostende Stähle			Legierungen					Legierungen								
			te St		T															
	Konzentration	ို Temperatur	Unlegierte und niedriglegierte Stähle	ferritische	austenitische	austenitische + Mo	Incoloy 825 2.4858	Inconel 600 2.4816	Inconel 625 2.4856	Hastelloy-C 2.4610 / 2.4819	Monel 2.4360	Cunifer 30 2.0882	Tombak	Bronze	Kupfer	Nickel	Titan	Tantal	Aluminium	Silber
	%	°C	들	fer	an	an	프	프	트	표	ž	3	卢	풢	₹	ž	Ĕ	Ta.	Al	Si
Äthylen																				
CH ₂ =CH ₂		20	0	0	0	0													0	
Äthylenbromid																				
CH ₂ Br-CH ₂ Br			1		0	0										0			3	
Äthylenchlorid t		20	0	L	L	L	1	0				0	1		1		0	0	0	1
CH ₂ CLCH ₂ CL fe		20		L	L	L					ļ.,							0		1
Äthylenglykol	100	20	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0	0	
CH ₂ OH-CH ₂ OH	400			_											_				_	
Alaun	100	20	1	1	0	0	0	1	0	0		1	١.	١.	1			0	1	
KAI (SO ₄) ₂ w	1	20	1	0	0	0				1		1	1	1	1		0	0	1	
w	1 10 hg	<80	1	1 3	0	0				1		1					0	0		
Alkohol	9				۲	i i														
s. Äthylalkohol																				
Allylalkohol	100	SP			0	0	0	0	0	1	0					0				_
CH ₂ CHCH ₂ OH					-	-	-		-		-									
Allylchlorid	100	25			\vdash	0	0	0	0		0		\vdash			0				_
CH ₂ =CHCH ₂ CI																				
Aluminium Schn		750	3	3	3	3					3					3	3			
Al																				
Aluminiumacetat w	3	20	3	0	0	0	\vdash			0		Т	\vdash			0	0			
(CH ₃ -COO) ₂ AI(OH) w	l hg		3	0	0	0				1		1					0	1		
Aluminiumchlorid w	5	20	3	3	3	L	1	1	0	0	1	3	3	1	3	1	0	0	3	1
AICI ₃												İ								
Aluminiumfluorid w	10	25	3	3	3	3				1	1				1	1	0	3	1	1
AIF ₃												1								
Aluminiumformiat			1	0	0	0	0	0	0	0				0	1	0	0	0	0	
AI(HCOO) ₃																				
Aluminiumhydroxid w	10	20	1	3	0	0	0		0	0	1	0			0		0	0	1	
AI(OH) ₃																				
Aluminiumnitrat			0	0	0	0	0	0	0	0	0						0	0	1	
AI(NO ₃) ₃																				

10

Medium											٧	Verk	stoff	е							
Bezeichnung Chemische Formel				Stähle	ro	nich sten Stähl	de			kelba	nsis- ngen			ferba ierur			Re	ine I	Meta	alle	
		Konzentration	Temperatur	Unlegierte und niedriglegierte Stähle	ferritische	austenitische	austenitische + Mo	ncoloy 825 2.4858	Inconel 600 2.4816	Inconel 625 2.4856	Hastelloy-C 2.4610 / 2.4819	Monel 2.4360	Cunifer 30 2.0882	Tombak	Bronze	ifer	kel	<u>=</u>	tal	Aluminium	er
		%	°C	등	ferr	ans	ans	li Li	Inc	luc Luc	Has	§ Mg	D U	Toll		Kupfer	Nickel	Titan	Tantal		Silber
$\begin{array}{c} \textbf{Aluminiumoxid} \\ \textbf{Al}_2\textbf{O}_3 \end{array}$			20	1	1	0	0	0		0	0	3	0	0	0	0			0	3	
Aluminiumsulfat	wl	10	<sp< td=""><td>3</td><td>3</td><td>3</td><td>0</td><td>0</td><td>1</td><td>0</td><td>1</td><td>3</td><td>3</td><td>3</td><td>3</td><td>3</td><td>1</td><td>0</td><td>0</td><td>3</td><td></td></sp<>	3	3	3	0	0	1	0	1	3	3	3	3	3	1	0	0	3	
Al ₂ (SO ₄) ₃	wl	15	50	3	3	3	1		1	1	1	1	1	1	1	1	1	0	0	3	
Ameisensäure		10	20	3	3	1	0	0	1	0	0	1		0		0	1	0	0	0	1
НСООН		10	SP	3	3	3	1	0	1	0	0	1		0			3	0		3	3
		80 85	SP 65	3	3	3	3	0	1	0	0	3 2		0		0	1	3		3	3
Ammoniak	tr	10	20	3 N	0	0	0	U	0	0	0	1	0	S	S	0	3	0	0	0	0
NH ₃	wl	2	20	0	0	0	0		0	0	0	0	3	S	S	3	3	0	0	1	0
14113	wl	20	40	0	0	0	0	0	1	1	1	3	3	٦	3	3	3	0	0	'	"
	wl	ha	SP	0	0	0	0	0	3	1	1	3						0	0		
Ammoniumalaun	wl	kg	20	1	Ť	0	0	Ť	Ť	Ė	-	<u> </u>						3	0		
NH ₄ AI(SO ₄) ₂		-																			
Ammoniumacetat				1	0	0	0												0	0	
CH ₃ -COONH ₄																					
Ammoniumbicarbonat	wl			0	0	0	0	1	3			3	3			3			0	0	
(NH ₄)HCO ₃																					
Ammoniumbifluorid	wl	10	25	3	3	3	3				0							3	0		
NH ₄ HF ₂	wl	100	20	3	3	0	0	_		_	0	_						3	0	_	
Ammoniumbromid NH ₄ Br	wl	10	25	3	L	L	L	0		0	1								0	1	
Ammoniumcarbonat	wl	1	20	0	0	0	0	0	0	0	1	0	1	H	_	1	-	_	0	0	0
(NH ₄) ₂ CO ₃	vVI	50	SP SP	0	0	0	0	0	0	0	1	0	1			1	1		0	0	0
Ammoniumchlorid	wl	1	20	1	L	L	L	0	0	0	0	0	1	S	S	1	1	0	0	1	1
NH ₄ CI	wl	10	100	1	L	L	L	0	0	0	0	1	1	S	S	1	1	0	1	1	1
4-1	wl	50	SP	1	L	L	L	0	1	0	1	1	1		-	1	1	0	1	1	1
Ammoniumfluorid		10	25	1	1	0	0				0							1	0		
NH_4F	wl	hg	70	3																	
	wl	20	80	3		3	3				0			3	3	3			0		
Ammoniumfluosilikat	wl	20	40	3		1	0	0	0	0	0	0					0				
(NH ₄) ₂ SiF ₆																					
Ammoniumformitat	wl	10	20	1	0	0	0	0	0	0	0	0						0	0	0	
HCOONH ₄		10	70																0	0	

Medium											٧	Verk	stoff	е							
Bezeichnung Chemische Formel				Stähle	ro	nich sten Stähl	de				asis- ngen		Kup Legi	ferba ierur			Re	ine I	Vleta	ille	
		% Konzentration	ာိ Temperatur	Unlegierte und niedriglegierte	ferritische	austenitische	austenitische + Mo	Incoloy 825 2.4858	Inconel 600 2.4816	Inconel 625 2.4856	Hastelloy-C 2.4610 / 2.4819	Monel 2.4360	Cunifer 30 2.0882	Tombak	Bronze	Kupfer	Nickel	Titan	Tantal	Aluminium	Silber
A			20	5	_e	an O	an O	0	0	0	<u>₩</u>	Σ	ತ	욘	퓹	3	0	0		A	S
Ammoniumhydroxid		100	20		U	U	U	U	U	U	U	3	3			3	U	U	U	'	
NH ₄ OH Ammoniumnitrat	wl	5	20	3	0	0	0	0	1	0	0	3	3	\vdash	-	3		-	0	0	_
NH ₄ NO ₂	wl	100	SP	3	0	0	0	0	'	١	0	3	3	3	3	3			0	0	
Ammoniumoxalat	wl	100	20	1	1	0	0	"	1	0	0	1	1	٦	J	1		0	0	U	_
(COONH ₄) ₂	wl	10	SP	3	3	1	0		1	0	U	1	1			1		1	0		
Ammoniumperchlorat	wl	10	20	3	L	i.	L			0	1	i.				<u> </u>		0	0		_
NH ₄ CIO ₄	•••		20		-	-	-											"			
Ammoniumpersulfat	wl	5	20		0	0	0	0	1	0	0	3	3			3	3	0	0	3	_
(NH ₄)S ₂ O ₈	wl	10	25	3	1	1	1				0	3	3	3	3	3	3	0			3
Ammoniumphosphat	wl	5	25	0	1	1	0	0	1	0	0	1	1	Ė		3	1	0	0	1	Ė
NH ₄ H ₂ PO ₄																					
Ammoniumrhodanid			70		0	0	0											0		0	
NH ₄ CNS																					
Ammoniumsulfat	wl	1	20	0	0	0	0	0	1	0	0	1	3			3	1	0	0	L	
$(NH_4)_2SO_4$	wl	10	20	0	1	1	0	0	3		1	1	3	3	1	3	1	3	0	L	1
	wl	hg	SP	1		0					3	2	3					0	0		
Ammoniumsulfit		kg	20		1	0	0	3	3			3	3			3	3	0	0		
(NH4) ₂ SO ₃		hg	SP		3	1	1	3	3			3	3			3	3	0	0		
Ammoniumsulfocyanat																					
s. Ammoniumrhodanid																					
Ammonsalpeter																					
s. Ammoniumnitrat																					
Amylacetat		alle	20	١.		١.		1	1	1	1	1	1			1	1		1	1	
CH ₃ -C00C ₅ H ₁₁		100	SP	1		1	1		0	1	1	0	0				0		_	0	_
Amylalkohol		100	20 SP	0	0	0	0		0	0	0	0	0	0	0	0	0		0		
C ₅ H ₁₁ OH Pentanole		100	SP SP	1	U	0	0 L	0	1	0	0	1	0	_		0	1	0	0	3	_
Amylchlorid		100	24	'		L	L	"		U	U		U			١ ا	1	U	U	3	
CH ₃ (CH ₂) ₃ CH ₂ CI Amylmercaptan		100	160			0	0				0										
Anilin		100	20			0	0	0	1	0	0	3	3	3	3	3	3	0		0	0
$C_6H_5NH_2$		100	180			1	1				1	1	1							3	0

576 *WITZENMANN* 1501de/19/10/23/pdf **HYDRA** 1501de/19/10/23/pdf *WITZENMANN* 577

Medium											١	Verk	stof	е							
Bezeichnung Chemische Formel				Stähle	ro	nich sten Stähl	de			kelba	nsis- ngen			ferba ierun			Re	ine	Meta	alle	
		Konzentration	Temperatur	Unlegierte und niedriglegierte Stähle	ferritische	austenitische	austenitische + Mo	Incoloy 825 2.4858	Inconel 600 2.4816	Inconel 625 2.4856	Hastelloy-C 2.4610 / 2.4819	Monel 2.4360	Cunifer 30 2.0882	Tombak	azı	fer	el	_	la	⇔ Aluminium	er
		%	°C	를	ferri	ansl	ansl	lnco	lnco	luco	Has	δ	Cun	Tom	Bronze	Kupfer	ا Nickel	Titan	Tantal	Alur	Silber
Anilinchlorid	wl	5	20		L	L	L				0		3			3	3	0	0	3	
C ₆ H ₅ NH ₂ HCI	wl	5	100		L	L	L				0							0			
Anilinhydrochlorid																					
s. Anilinchlorid																					
Anilinsulfat			20				0				0									1	
Anilinsulfit	wl	10	20				0		1		0										
	wl	kg	20				0				0										
Antimon	Schm	100	650	3						0	0							3		3	
Sb																					
Antimonchlorid	tr		20	0	3	3	3										0			3	
SbCl ₃	wl		100	1	3	3	3										0			3	
Apfelsäure	wl		20	3	3	0	0	0	1	0	0	1	3			3	3	0	0	0	
	wl	50	100	3	3	0	0	0	1	0	0	1	3	3	3	3	3	0	0	0	
Apfelwein			20	3	0	0	0	0	0	0	0	0					0	0	0	1	0
			SP	3	0	0	0	0	0	0	0	0					0	0	0	1	0
Arsen			65			0	0														
As			110			1	1														ĺ
Arsenige Säure	wl		20	3		0	0														
H ₃ AsO ₄	wl	90	110		3	3	3		3				3			3				3	
Asphalt			20	0	0	0	0						0	0	0	0	0			0	
Azobenzol			20		0	0	0	0	0	0	0	0						0	0	0	
$C_6H_5-N=N-C_6H_5$																					
Backpulver	fe			1	0	0	0	0	0	0	0	0				1				0	
Bariumcarbonat			20	3	0	0	0	0		0	0	0	0	0	0	0	t	0	0	1	
BaCO ₃																					
Bariumchlorid	wl	5	20		L	L	L	1	1	0	0	1	3			3	1	0	0	3	
BaCl ₂	wl	25	SP		L	L	L	1	1	0	0	1					1	0	0	L	l
Bariumhydroxid	fest	100	20	0	0	0	0	0	1		0	1	0	1	0	0	0	0		3	
Ba(OH) ₂	wl	alle	20	0	0	0	0	0	1		0	1	0	1	0	0	1	0		3	ĺ
-	wl	alle	SP	0	0	0	0				1		0					0			
	wl	100	815	0	0	0	0	0	1								1	0			ĺ
		kg	20	0	0	0	0				1		0	1	0	0	0	0		0	l
	wl	hg	SP	0	0	0	0				1						0	0		3	ĺ
		50	100	0	0	0	0	0	1			1					0	0			l

Medium											١	Verk	stoff	е							
Bezeichnung Chemische Formel				Stähle	ro	nich sten Stähl	de				nsis- ngen		Kup Legi	ferba ierur			Re	ine I	Vleta	ille	
		% Konzentration	ភិ Temperatur	Unlegierte und niedriglegierte Stähle	ferritische	austenitische	austenitische + Mo	Incoloy 825 2.4858	Inconel 600 2.4816	Inconel 625 2.4856	Hastelloy-C 2.4610 / 2.4819	Monel 2.4360	Cunifer 30 2.0882	Tombak	Bronze	Kupfer	Nickel	Titan	Tantal	Aluminium	Silber
Bariumnitrat	wl	alle	SP	ō	0 e	a	a	0	1	0	業	2	3	卢	<u>—</u>	3	2	0	0	0	S
Ba(NO ₃) ₂	VVI	alle	31		١	"	0	١	'	١			3			"		"	"	U	
Bariumsulfat			25	0	0	0	0	0		0	\vdash	0	0	0	0	0	1	0	0	0	
BaSO ₄			23	"	"	"	"	"		"		"	U	١	"	"	'	"	١	0	
Bariumsulfid			25	\vdash	0	0	0	\vdash	-	\vdash		\vdash	3	1	3	3	\vdash	\vdash		\vdash	
BaS			23		١	"	0						J	l '	٦	"					
Benzin ¹⁾		100	25	1	0	0	0	0	0	0	0	0	1	1	0	0	0	1		1	
Delizili '		100	SP	1	"	"	0	0	U	"	0	1	'	l '	"	"	"	1		1	
Benzoesäure	wl	alle	20	1	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	
C ₆ H ₅ COOH	wl	alle	SP	3	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	3	
Benzol ¹⁾	VVI	100	20	1	1	1	1	0	1	1	1	2	U	1	1	1	1	0	0	1	0
Delizor		100	SP	1	2	1	1	١	1	1	1	2	0	1	1	1	1	0	0	1	0
Benzaldehyd	tr	100	SP	l'	0	0	0	-	'	 	-	-	U	H.	-	<u> </u>	H.	1	0	0	0
C ₆ H ₅ -CHO	u		31		١	"	0											'	١	U	"
Benzolsulfonsäure	wl	5	40	3	0	0	0														
C ₆ H ₅ -SO ₃ H	wl	5	60	3	3	1	1														
Benzylalkohol	VVI	alle	20	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0			
C ₆ H ₅ -CH ₂ OH		uno	20	١.	١.	ľ	ľ	ľ	ľ	ľ	Ü	ľ	ľ	ľ	ľ	ľ	"	ľ			
Bernsteinsäure			SP	1	0	0	0	0	0	0	0	0	0	0	0						
C ₄ H ₆ O ₄			01	Ι.	"	"	"	"		"	ľ	"		ľ							
Bier		100	20	3	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	
		100	SP	3	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	
Blausäure				Ť	Ė	Ė	Ť	Ė	Ė	Ė	Ė	Ė	Ť	Ė	Ė	Ė	Ť	Ė	Ė	Ė	
s. Cyanwasserstoff																					
Blei	Schm		388	3	1	1	1	\vdash	0	\vdash	\vdash	3				3	\vdash	0	0	\vdash	
Pb			900	3	3	3	3				0										
Bleiacetat	Schm			3	0	0	0	\vdash		\vdash	0	0			3	3	\vdash	\vdash		3	
(CH ₃ -COO) ₂ Pb																					
Bleiacid	-	<20	<30	\vdash		\vdash		0	0	0		1					1				
Pb(N ₃) ₂																					
Bleinitrat	wl		100	1	0	0	0	0	0	0	0	0						0	0	0	
Pb(NO ₃) ₂																					
Blut			20	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0			

¹⁾ Schlechteste Bewertung aus "Corrosion Data Survey" (NACE, 1967) und "Compass Corrosion Guide II" (Kenneth M. Pruett, 1983)

578 WITZENMANN 1501de/19/10/23/pdf 1501de/19/10/23/pdf (HYDRA®) (HYDRA°)

Medium											V	Verk	stoff	e							
Bezeichnung Chemische Formel				Stähle	ro	nich sten Stähl	de				asis- ngen			ferba ierur	asis- ngen		Re	ine I	Vleta	ille	
		Konzentration	Temperatur	Jnlegierte und niedriglegierte Stähle	ferritische	austenitische	austenitische + Mo	Incoloy 825 2.4858	Inconel 600 2.4816	Inconel 625 2.4856	Hastelloy-C 2.4610 / 2.4819	Monel 2.4360	Cunifer 30 2.0882	Tombak	Bronze	ıfer	Nickel	<u>=</u>	tal	Aluminium	er
		%	°C	틀	ferr	ans	ans	을	일	ᆵ	Has	ŝ	3	둳	Bro	Kupfer	Ş	Titan	Tantal	Alu	Silber
Blutlaugensalz																					
s. Kaliumferricyanid					L	L	L														
Bor			20	0	0	0	0														
<u>B</u>			900	0				<u> </u>	_		_			_		_	_				_
Borax	wl	kg		1	0	0	0						0	0	0	0		0	0	0	
Na ₂ B ₄ O ₇	wl	hg	100	3	0	0	0	0	1	_	0	1		1		1	1	0	0	1	_
Borsäure	wl	50	100	-	0	0	0	0	1	0	0	1		1		1	1	0	0	1	1
H ₃ BO ₃	wl	50 70	150 150	3	1	0	0	0	1	0	0	1	0	1	1	1	1	0	0	1	0
Branntwein	wl	70	20	1	0	0	0	0	0	0	0	0	U	<u> </u>	-	<u> </u>	-	U	U	1	-
Diaiiiitweiii			SP	3	0	0	0	0	0	0	0	0									
Brom	tr	100	20	L	L	L	L	1	0	0	0	0		0	0	0	0	3		3	0
Br	fe	100	20	L	Ĺ	L	L	Ι΄.	3	ľ	3	0	1	3	1	3	0	0		3	0
Bromammonium				-	<u> </u>	-	<u> </u>					۳	Ė	۰	Ė	۰		۰			Ť
NH₄Br																					
s. Ammoniumbromid																					
Bromkalium																					_
KBr																					
s. Kaliumbromid																					
Bromoform	tr		20	0	0	0	0	0	0	0	0	0			0	0				3	
CHBr ₃	fe		3	0	0	0	0	0	0	0	0			0	0				3		
Bromwasser		0,03	20		L	L	L														
		1	20		L	L	L														
Bromwasserstoff	tr	100	20	0	0	0	0														
HBr	fe	30	20	3	3	3	3											0			
Bromwasserstoffsäure			20	3	3	3	3	3	3	3	3	3	3	3	3	3			0	3	3
HBr				_					_	_	_										
1,3 Butadien								0	0	0		0				0	0			0	
CH ₂ =CHCH=CH ₂		400	- 00							_	_				0	_					_
Butan		100	20	0	0	0	0	0	0	0	0	0	0	0	0	1	0			1	
C ₄ H ₁₀ Butter		100	120	2	1	0	0	0	0	0	1				-	2	-			0	_
Buttermilch			20	3	0	0	0	0	0	0	0	3		_	3	3	-			0	_
DULLERMIICN			ZU	3	U	U	U	U		U	U	3			3	3				U	

Medium											٧	Verk	stoff	e							
Bezeichnung Chemische Formel				Stähle	ro	nich sten Stähl	de				asis- ngen			ferba ierur			Re	ine I	Meta	alle	
		% Konzentration	ဘိ Temperatur	Unlegierte und niedriglegierte	ferritische	austenitische	austenitische + Mo	Incoloy 825 2.4858	Inconel 600 2.4816	Inconel 625 2.4856	Hastelloy-C 2.4610 / 2.4819	Monel 2.4360	Cunifer 30 2.0882	Tombak	Bronze	Kupfer	Nickel	Titan	Tantal	Aluminium	Silber
Buttersäure	wl	kg	20	3	0	0	0	1	3	0	0	1					3			0	
CH ₃ -CH ₂ -CH ₂ -COOH	wl	hg	SP	3	3	3	0	1	3	0	0	1					3			1	
Butylacetat			20	1	0	0	0	0		0	0	1	0	0	0	0		0	0	0	0
$CH_3COOC_4H_9$			SP	1	0	0	0	0	L	0	0	0	0		L	0		0	0	0	
Butylalkohol		100	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CH ₃ -CH ₂ -CH ₂ -CH ₂ OH		100	SP	0	0	0	0		0		0	0						0	0	0	
Cadmium	Schm					3	3														
Cd																					
Calcium			850	3		3	3														
Ca																					
Calciumbisulfit		kg	20	3	3	0	0						1	3	1	0		0			
CaSO ₃		hg	SP	3	3	3	0											0			
Calciumcarbonat CaCO ₃			20	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Calciumchlorat	wl	10	20		L	L	L	1	1	1	1	1	3			1	1		0		
Ca(CIO ₃) ₂	wl	10	100		3	3	L	1	1	1	1	1	3			1	1		0		
Calciumchlorid	wl	5	100	3	L	L	L				0							0	0	3	
CaCl ₂	wl	10	20	3	L	L	L	0	0	0	0	0	0	3	1	1	0	0	0	3	
		kg		3	L	L	L	0	0	0	0	1	0	3		0	1	0	0	3	
		hg		3	3	L	L	0	0	0	0	3	0	3			L	L	0	3	L
Calciumhydroxid Ca(OH)2				0	0	0	0	1	1	0	0	1	0	0	0	1	1	0	0	3	
Calciumhypochlorit	wl	2	20	3	3	3	L	0	3	0	0	3	3			3	3	0	0	3	
Ca(OCI) ₂	wl	kg		3	3	3	L				1								0	3	
Calciumnitrat			20	3	0	0	0	0	0	0	0	0						0		0	
$Ca(NO_3)_2$		alle	100	3	0	0	0	0		0	0	0						0		0	
Calciumoxalat	fe		20	1	0	0	0	0	0	0	0	0	0	0	0			0	0	3	
(COO) ₂ Ca																					
Calciumoxid			20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		3	
Ca0																					
Calciumsulfat	fe		20	1	0	0	0	0		0	0	0	0	0	0	0	0	0	0	1	
CaSO ₄	fe		SP	1	0	0	0	0	L	0	0	0	0	0	0	0	0	0	0	1	L

Medium											١	Verk	stoff	e							
Bezeichnung Chemische Formel				Stähle	ro	nich sten Stähl	de			kelba				ferba ierur			Re	ine I	Vleta	ille	
		% Konzentration	င် Temperatur	Unlegierte und niedriglegierte	ferritische	austenitische	austenitische + Mo	Incoloy 825 2.4858	nconel 600 2.4816	Inconel 625 2.4856	Hastelloy-C 2.4610 / 2.4819	Monel 2.4360	Cunifer 30 2.0882	Tombak	Bronze	Kupfer	Nickel	Titan	Tantal	Aluminium	Silber
Calciumsulfit	wl	kg		0	0	0	0	_	_	_	_	_		_	_	1	_	0	0	1	
CaSO ₃	wl	hg		0	0	0	0									1		0	0	1	
Chininbisulfat	tr		20	3	3	3	0	0		0	0	1	0			0		0	0		\vdash
Chininsulfat	tr		20	3	0	0	0	0		0	0	1	0		0	0		0	0		
Chlor	tr	100	200	0	0	0	0		0	0	0	0	0	0	0	0	0	1	0	0	0
Cl ₂	tr	100	300	3	3	3	0		0	0	0	0									
	tr	100	400	3	3	3	3		0	0	0	0									
	fe		20	3	3	3	3	0			0							0	0	3	
	fe		150	3	3	3	3				0							0	0	3	
Chloräthyl C ₂ H ₅ Cl s. Äthylchlorid																					
Chloral CCI ₃ -CHO			20								0								0	3	
Chloramine				3	3	1	0	0		0	0	0									
Chlorbenzol	tr			0	0	0	0				0										Т
C ₆ H ₅ CI	fe	100	20	0	L	L	L	0	0	0	0	0	0	0	0	1	1	0	0	1	
Chlordioxid	wl	0,5	20	3	3	3	3				1				3			0	0		
CIO ₂																					
Chloressigsäure		alle	20	3	3	3	L	3		1	1	3	3			3		0	0	3	
CH ₂ -CI-COOH	wl	30	80	3	3	3	3		3		0		L	3	3	3	1	0	0	3	
Chlorkalk																					
s. Calciumhypochlorit																					
Chlornaphtalin				0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	
C ₁₀ H ₇ CI																					
Chloroform	tr			1	1	1	1	0	0	0	0	0	0	0	0	0	0	0		0	
CHCI ₃	fe			3	L	L	L	0	0	0		0						0		3	
Chlorphenol				1	0	0	0				0										
C ₆ H ₄ (OH)CI					L		L				L							L	L		L
Chlorsäure HCIO ₃	wl		20	3	3	3	3	0			0							0	0	3	3
Chlorsulfonsäure HSO ₂ CI	tr fe	100	20 20	0	0	0	0	0	0	0	0	0				0	0	0	0	0	3

Medium											٧	Verk	stoff	е							
Bezeichnung Chemische Formel				Stähle	ro	nich sten Stähl	de				sis- ngen		Kup Legi	ferba ierur			Re	ine I	Meta	lle	
		% Konzentration	ဘိ Temperatur	Unlegierte und niedriglegierte Stähle	ferritische	austenitische	austenitische + Mo	Incoloy 825 2.4858	Inconel 600 2.4816	Inconel 625 2.4856	Hastelloy-C 2.4610 / 2.4819	Monel 2.4360	Cunifer 30 2.0882	Tombak	Bronze	Kupfer	Nickel	Titan	Tantal	Aluminium	Silher
Chlorwasserstoff	tr		20	0	3	1	1	0	0	0	0			3	3	3				1	0
HCI	tr		100	0	3	3	3	0	0	0	0			3		3				1	
	tr		250	1	3	3	3	0	0	0	0			3		3				3	3
	tr		500	3	3	3	3		1		0			3		3				3	3
Chromalaun	wl	1	20	3	3	0	0					1						0		1	
KCr(SO ₄) ₂		kg		3	3	1	0		0			0		3			1	0		3	
		hg		3	3	3	3		0			1		3			3	0		3	
Chromoxide				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Г
CrO ₃																					
Chromsäure	wl	5	20	3	3	0	0	1	3	0	0	3	3	3	3	3	3	0	0	1	0
Cr_2O_3 (H_2CrO_4)	wl	5	90	3	3	3	3				1	3	3	3	3	3	3	0	0		
	wl	10	20	3	0	0	0	1	3		0	3	3	3	3	3	3	0	0	1	
	wl	10	65	3	3	3	3				0	3	3	3	3	3	3	0	0		
	wl	10	SP	3	3	3	3	1	3		0	3	3	3	3	3	3	0	0	3	
	wl	50	SP	3	3	3	3	3	3		3	3	3	3	3	3	3	0	0	3	
	wl	60	20	3	3	3	3	1	3			3	3	3	3	3	3	0	0	3	
Chromsäureanhydrid																					
CrO ₃																					
s. Chromoxide																					
Chromsulfat		kg		3	0	0	0		0	0	0	0					0				
$Cr_2(SO_4)_3$		hg		3	0	1	1		1	0	0	0					0				L
Crotonaldehyd			20	3		0	0	0	0	0	0	0	0	0		0				0	
CH₃-CH=CH-CHO			SP	L	L	1	0	0	0	0	0	0	0	0		L		L		0	L
Cyankalium																					
s. Kaliumcyanid							L				L		L			L	L	L	L		L
Cyanwasserstoff	tr		20	3	0	0	0	0	1	0	0	1	3	3	3	1	0	0	0	0	
HCN	wl	20	20	3	1	0	0	0	1	0	0	1	3	3	3	1	0	0	0	0	
	wl	kg	20	3	1	0	0	0	0	0	0	3	3	3	3	1	0	0	0	0	L
Cyclohexan				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
(CH ₂) ₆																					
Diammoniumphosphat	Ī																				
s. Ammoniumphosphat																					
Dibromethan																					
s. Äthylenbromid																					

(HYDRA®)

Medium											١	Verk	stoff	е							
Bezeichnung Chemische Formel				Stähle	ro	nich sten Stähl	de			kelba			Kup Legi				Re	ine	Meta	ille	
		Konzentration	Temperatur	Unlegierte und niedriglegierte Stähle	ferritische	austenitische	austenitische + Mo	ncoloy 825 2.4858	Inconel 600 2.4816	Inconel 625 2.4856	Hastelloy-C 2.4610 / 2.4819	Monel 2.4360	Cunifer 30 2.0882	ak	Ze	er	e		-E	Aluminium	<u></u>
		%	°C	Unle	ferrit	aust	aust	Inco	Inco	lnco	Hast	Mon	Gmi	Tombak	Bronze	Kupfer	Nickel	Titan	Tantal	Alum	Silber
Dichloräthan					_			_		_		_					_		·	_	
CH ₂ CI-CH ₂ CI																					
s. Äthylenchlorid																					
Dichloräthylen																					
$C_2H_2CI_2$																					
s. Acetylendichlorid				ĺ																	
Dichlordifluormethan	tr		SP			0	0	0	0	0	0	0							0	0	
CF ₂ CI ₂	tr		20			0	0	0	0	0	0	0							0	0	
	fe		20			0	0	0	0	0	0	0							0	0	
Diphenyl		100	20	0	0	S	S	0	0	0	0	0	0	0	0	0	0	0	0	0	
$C_6H_5-C_6H_5$		100	400	0	0	S	S	0	0	0	0	0				0	0	0	0	0	
Eisen(II)-Chlorid	wl	10	20	0		L	L				1		1	3	1	1		0	0	3	
FeCl ₂	wl	kg						3	3		0	3	3			3	3	0	0	3	
Eisen(III)-Chlorid	tr	100	20	0	L	L	L	1	3		0	3	3	3	3	3	3	0	0	3	
FeCl ₃	wl	5	25	3	3	3	3	3	3		0	3	3	3	3	3	3	0	0	3	
	wl	10	65	3	1	1	1				3						0	0			
	wl	50	20	3	3	3	3		3		1		3	3	3	3		0	0		
Eisen(III)-Nitrat	wl	10	20	3	0	0	0				0							0			
Fe(NO ₃) ₃	wl	alle	SP	3	0	0	0	3	3	3	3	3				3	0	L			
Eisen(II)-Sulfat FeSO ₄	wl	alle	SP	0	0	0	0				0	0					3	0		3	
Eisen(III)-Sulfat	wl	<30	20	3	0	0	0	0	3		0	1	3	3	3	3	3	0	0	3	
Fe(SO ₄) ₃	wl	alle	SP	3	1	0	0				0							0	0	3	
Eisessig																					
CH ₃ CO ₂ H																					
s. Essigsäure				L			L		L	L	L			L	L		L				
Eiweißlösungen			20	1	0	0	0	0	0	0	0	0	0					0	0	0	
Essigsäure		5	20	3	0	0	0	0	1	0	0	1				0	3	0	0	0	
CH₃-COOH		5	SP	3	3	0	0	0	1	0	0	1						0	0		
		50	20	3	3	0	0	0	1	0	0	1				0	3	1	0	0	0
		50	SP	3	3	3	0	0	1	0	0	1				3	3	0	0	3	1
		80	20	3	3	L	L	0	1	0	0	1					3	0	0	0	0
		96	20	3	3	3	L	0	1	0	0	1					3	0	0		
		98	SP	3	3	3	3	0	1	0	0	1	L		L		L	0	0	L	L

Medium											١	Verk	stoff	е							
Bezeichnung Chemische Formel				Stähle	ro	nich sten Stähl	de				asis- ngen		Kup Legi				Re	ine	Meta	alle	
		% Konzentration	ကို Temperatur	Unlegierte und niedriglegierte	ferritische	austenitische	austenitische + Mo	Incoloy 825 2.4858	Inconel 600 2.4816	Inconel 625 2.4856	Hastelloy-C 2.4610 / 2.4819	Monel 2.4360	Cunifer 30 2.0882	Tombak	Bronze	Kupfer	Nickel	Titan	Tantal	Aluminium	Silber
Essigsäureanhydrid		alle	20	1	0	0	0	0	1	0	0	1	1	3	0	0	1	0	0	0	0
(CH ₃ -CO) ₂ O		100	60	3	-	0	0	-		-	0		1		1	1	1	0	0	1	0
		100	SP	3		0	0		3		0						1	0	0	3	0
Essigsäuredampf		33	20	Ė	3	1	1	\vdash									\vdash	<u> </u>	Ė		H
		100	>50		3	3	3	0	1		0	1	3			3	3	0		1	
		100	<sp< td=""><td></td><td>3</td><td>3</td><td>3</td><td>0</td><td>3</td><td></td><td>0</td><td>3</td><td>3</td><td></td><td></td><td>3</td><td>3</td><td>0</td><td></td><td>3</td><td></td></sp<>		3	3	3	0	3		0	3	3			3	3	0		3	
Essigsäurebutylester				\vdash																	
s. Butylacetat																					
Essigsaure Tonerde																					
s. Aluminiumacetat																					
Fette				0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	
Fettsäure		100	20	0	0	0	0	0	0	0	0	1	1	1	0	1	0	0	0	0	0
C ₁₇ H ₃₃ COOH		100	60	3	0	0	0	0	0	0	0	0		1	1	1	0	0	0	1	0
		100	150	3	3	0	0	0	0	0	0	1		1	1	3	0	0	0	3	0
		100	180	3	3	3	0	0	0	0	0	1		1	3	3	0	0	0	3	0
		100	300	3	3	3	0	0	0	0	0			3	3	3	0	0	0	3	0
Firnis			20	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	
Fixiersalz																					
s. Natriumthiosulfat																					
Fluor	fe		20	3	3	3	3				0	0	3	3	3	3	0	3		3	0
F	tr	100	20	0	0	0	0				0	0	0	0	0	0	0	0		3	0
	tr	100	200	0	0	L	L				0	0				3	0	0		3	
	tr	100	500	3							0									3	
Fluorammonium																					
s. Ammoniumbifluorid																					
Fluorkieselsäure																					
s. Kieselfluorwasser- stoffsäure																					
Fluorwasserstoff		5	20		3	3	3	3	0	0	0	0				3	0	3	3	3	
HF		100	500	3	3	3	3	3	3	_	0	3	_	3	_	3	0	3	3	3	_
Fluorwasserstoffsäure		10	20	3	3	3	3	1	1	0	0	1		3	3	3	1	3	3	3	
HF		80	20	1				1	1	1	1	1				1	1	3	3	3	
		80	SP					١.	١.		1	1					١.	3	3	3	
		90	30					1	1			0	1				1	3	3	3	

584 WITZENMANN 1501de/19/10/23/pdf (HYDRA®) 1501de/19/10/23/pdf WITZENMANN (HYDRA®)

585

Medium											١	Verk	stoff	е							
Bezeichnung Chemische Formel				Stähle	ro	nich sten Stähl	de				asis- ngen		Kup Legi				Re	ine I	Vieta	ille	
		Konzentration	Temperatur	Unlegierte und niedriglegierte Stähle	ferritische	austenitische	austenitische + Mo	Incoloy 825 2.4858	Inconel 600 2.4816	Inconel 625 2.4856	Hastelloy-C 2.4610 / 2.4819	Monel 2.4360	Cunifer 30 2.0882	Tombak	Bronze	Kupfer	Nickel	Titan	Tantal	Aluminium	Silher
F	1	%	°C	3	0 =	a 0	a 0	_		0	<u>문</u>	_	3 0	3	0	0	0		Ta		0
Formaldehyd	wl	10	20	3	0	0	0	0	0	0	0	0	0	3	0	0	0	0		1	0
CH ₂ O	wl wl	40 alle	20 SP	3	0	0	0	U	U	٦	0	U	U	3	U	١ ،	U	0		3	١
Frigen CF ₂ Cl ₂ s. Dichlordifluormethan		dile	- OI	J		0	0													3	
Frostschutzmittel			20		0	0	0	0	0	0	0	0					0	0	0	0	
Glysantin																					
Furfurol		100	25	1	1	1	1				0		0	3	0	0			0	0	
		100	SP	3	1	1	1	_			0					3			0	0	
Gallussäure	wl	1	20 20	1	0	0	0				0								0		
C ₆ H ₂ (OH) ₃ COOH		100	SP SP	3	0	0	0		3										0		
Gelatine		100	20	0	0	0	0		0		0								n		0
dolutillo			80	1	0	0	0		0		ľ	0	0	1	0	0	0	0	ľ	0	0
Gerbsäure	wl	5	20	3	0	0	0		0			0	0	1	0	0	0	0		0	Ť
C ₇₆ H ₅₂ O ₄₆	wl	25	100	3	3	0	0											0			
	wl	50	SP	3	3	0	0						0					0			
Gips																					
s.Calciumsulfat																					
Glas	Schm		1200	1		1	1														
Glaubersalz s. Natriumsulfat																					
Gluconsäure CH ₂ OH(CHOH) ₄ -COOH		100	20	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	
Glucose	wl		20		0	0	0						0	1	0	0		0		0	
$C_6H_{12}O_6$																					
Glutaminsäure HOOC-CH ₂ -CH ₂ - CHNH ₂ -COOH			20 80	1	L	L	0	0	1	0	0	1					1				
Glykolsäure			20	3	1	1	1	\vdash	_		0		\vdash	H		\vdash		0		1	\vdash
CH ₂ OH-COOH			SP	3	3	3	3				0							0		1	
		98	SP	3	3	3	3	0	1	0	0	1						0	0		

Medium					_	_	_		_		١	Verk	stoff	e				_			
Bezeichnung						nich		Г		kelba				ferba			Re	ine	Meta	ille	
Chemische Formel				al le		sten Stähl			Leg	ierur	ngen		Leg	ierur	igen						
				St	<u> </u>	Lain					1						_		_		
		% Konzentration	ာိ Temperatur	Unlegierte und niedriglegierte Stähle	ferritische	austenitische	austenitische + Mo	Incoloy 825 2.4858	Inconel 600 2.4816	Inconel 625 2.4856	Hastelloy-C 2.4610 / 2.4819	Monel 2.4360	Cunifer 30 2.0882	Tombak	Bronze	Kupfer	Nickel	Titan	Tantal	Aluminium	Silber
Glycerin		100	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
CH ₂ OH-CHOH-CH ₂ OH		100	SP	1	1	0	0	-	0	0	0	-		1		0	0	-	0	0	
Glykol				\vdash	\vdash	<u> </u>	<u> </u>	\vdash	<u> </u>	<u> </u>	Ė	\vdash	\vdash	\vdash	\vdash		H	\vdash	<u> </u>		\vdash
CH ₂ OH-CH ₂ OH																					
s. Äthylenglycol																					
Glysantin																					\vdash
s. Frostschutzmittel																					
Harnsäure	wl		20	3	0	0	0	0	1	0	0	0	0			1		0		3	
$C_5H_4O_4N_3$	wl		100	3	0	0	0	0	1	0	0	0	0			1		0		3	
Harnstoff		100	20	0	0	0	0				0	0					0	0	0	0	
$CO(NH_2)_2$		100	150	3		1	0		3		1	1	İ				1	0	0	3	1
Hefe			20	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hexachloräthan																					
CCI ₃ -CCI ₃	tr		20			0	0	0	0		0	0						0		0	
= Perchloräthan	fe		20			0	0	0	0		0	0						0		0	
Hexamethylentetramin	wl	20	60	1		0	0				0										1
$(CH_2)_6N_4$	wl	80	60	3		0	0				0										
Hydrochinon				3		0	0	0	0	0		1					1			0	
HO-C ₆ H ₄ -OH																					
Hydrazin			20	0		0		3	3			3					3			1	
H ₂ N-NH ₂																					
Hydrazinsulfat	wl	10	SP	3		3	3														
(N ₂ H ₆)SO ₄																					
Indol			20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	
Isatin			20	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	
C ₈ H ₅ NO ₂		46-			L	ļ.,	L.				L		L								
Jod	tr	100	20	0	L	L	L				0	0	3	3	3	3		3		0	
J_2	fe		20	3	3	3	3				1	3					3	0		3	3
	fe		SP	3	3	3	3	_	<u> </u>	_	1	3	_	_	_	_	3	_	_	3	3
Jodoform	tr		60	0	0	0	0													0	
CHJ ₃	fe		20	3	3	L	L														

586 WITZENMANN 1501de/19/10/23/pdf 1501de/19/10/23/pdf (HYDRA®) (HYDRA®)

WITZENMANN 587

Medium											٧	Verk	stoff	е							
Bezeichnung Chemische Formel				Stähle	ro	nich sten Stähl	de			kelba	nsis- ngen			ferba ierun			Re	ine I	Meta	ille	
		Konzentration	Temperatur	Unlegierte und niedriglegierte Stähle	ferritische	austenitische	austenitische + Mo	Incoloy 825 2.4858	Inconel 600 2.4816	Inconel 625 2.4856	Hastelloy-C 2.4610 / 2.4819	Monel 2.4360	Cunifer 30 2.0882	Tombak	Bronze	Kupfer	Nickel	ue.	Tantal	Aluminium	Silber
		%	°C					프	Inc	밀	Ŧ	ŝ	3	둳	Bu	₹	ž	Titan	Та	Alu	Sill
Jodwasserstoff	tr		20	0	0	0	0														
/-Säure	fe		20	3	3	3	3														
Kalialaun																					
s. Alaun																					
Kalilauge																					
s. Kaliumhydroxid																					
Kalisalpeter																					
s. Kaliumnitrat																					
Kalium	Schm		604	0		0	0				1							0		0	
K			80			0	0				1							0	1	0	
Kaliumacetat	Schm	100	292	1		0	0									1		0			
CH ₃ -COOK	wl		20	1	0	0	0		0	0	0	0			1	1	0	0			
Kaliumaluminiumsulfat																					
s. Alaun																					
Kaliumbisulfat	wl	5	20	3	3	2	0											0			
KHSO ₄	wl	5	90	3	3	3	3											3			
Kaliumbitartrat	wl	kg		3	3	0	0										0	0		0	
KC ₄ H ₅ O ₆	wl	hg		3	3	3	1										1	0		0	
Kaliumbromid	wl	5	30	3	L	L	L	0	1	0	0	1	0	0		0	0	0	0	3	
KBr																					
Kaliumcarbonat	wl	50	20	1	0	0	0	0	0	0	0	0	1	3	1	1	0	0	0	3	0
K ₂ CO ₃	wl	50	SP	3	3	0	0	0	0	0	0	0		3			0	0	0	3	0
Kaliumchlorat	wl	5	20	3	0	0	0	0	1	0		1	3	1	1	1	1	0		0	
KCI03	wl	hg		3	0	0	0	0	3	0	0	3	3			1	3	0	0	1	
Kaliumchlorid	wl	10	20	3	3	L	L	0	0	0	0	0	0							1	
KCI	wl	10	<sp< td=""><td>3</td><td>3</td><td>L</td><td>L</td><td></td><td></td><td></td><td>1</td><td></td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td></sp<>	3	3	L	L				1		3							1	
	wl	30	SP	3	3	L	L				1	0		3	1	3		0		0	0
	wl	kg		3	L	L	L				1										
	wl	hg		3	3	L	L				1										
Kaliumchromat	wl	10	20	0		0	0	0	0	0	0	1	0	0	0	0	0	0		0	
K ₂ CrO ₄	wl	10	SP	1		0	0											0		0	
Kaliumcyanid	wl	10	20	3	0	0	0	0	3		0	1	3			3	3		0	3	
KCN	wl	10	SP	3	0	0	0						3	3	3	3				3	

Medium											٧	Verk	stoff	е							
Bezeichnung Chemische Formel				Stähle	ro	nich sten Stähl	de				isis- igen		Kup Legi	ferba ierur			Re	ine I	Vleta	ille	
		Konzentration	Temperatur	Unlegierte und niedriglegierte Stähle	ferritische	austenitische	austenitische + Mo	Incoloy 825 2.4858	Inconel 600 2.4816	Inconel 625 2.4856	Hastelloy-C 2.4610 / 2.4819	Monel 2.4360	Cunifer 30 2.0882	Tombak	Bronze	fer	kel	-	tal	Aluminium	er
		%	°C		ferr	ans	ans	lie	i i	흘	Has	≗	Cur	卢	Bro	Kupfer	Nickel	Titan	Tantal		Silber
Kaliumdichromat	wl	10	40	3	0	0	0	1	1	1	1	1	0			3	1	0	0	0	
$K_2Cr_2O_7$	wl	25	40	3	3	0	0	1	1	1	1	1	3	3	3	3	1	0	0	0	0
	wl	25	SP	3	3	0	0				1	L	3	3	3	3		0	0	0	
Kaliumferricyanid	wl	1	20		0	0	0	1	1	0	0	0			0	0	1	0	0		
K₃(Fe(CN) ₆)	wl	kg	20		0	0	0		0		0	0			0		0	0	0	0	3
	wl	hg	SP	3	0	0	0		0		0						0	0	0	0	3
Kaliumferrozyanid	wl	1	20		0	0	0	1	1	0	0	0	0			0	1	0	0	0	
K ₄ (Fe(CN) ₆)	wl	25	20		0	0	0	0	0	0	0	0	0		0		0	0	0	0	3
	wl	25	SP		1	1	0	0	0	0	0	0	0				0	0	0	0	3
Kaliumfluorid	wl	kg		0	0	0	0				0									3	
KF	wl	hg		1	0	0	0				0										
Kaliumhydroxid	wl	10	20		0	S	S	1	1	1	1	0	0			3	0	0	3	3	
КОН	wl	20	SP		0	S	S	1	1	1	1	0	3				0	0	3	3	
	wl	30	SP		3	S	S	1	3	١.	1	0				3	0	3	3	3	
	wl	50	20	S	0	S	S	1	1	1	0	0	3				0	0	3	3	
	wl	50	SP	S	3	3	3	1	3		1	0	3			3	0	3	3	3	
	wl	hg 100	360	S	3	S 3	S 3		3		1		0				0	,	3	3	0
Kaliumhypochlorit	Schm	alle	20	3	L		L	3	3		0	3	3	_		_	3	3	J	3	
KCIO	wl	alle	SP SP		L	L	L	3	3		1	3	3				3	0		3	
Kaliumjodid	wl	alle	20	0	L	L	L	0	1	1	0	3	0	H	_	0	3	0	0	3	_
KJ	wl		SP	0	3	L	L	0	1	1	0	3	0			0	3	0	0	3	
Kaliumnitrat	wl	alle	20	-	0	0	0	0	1	1	1	1	0	\vdash		۳	1	0	-	0	_
KNO ₃	wl	alle	SP		0	0	0	"		Ι΄.	1	ľ					Ι΄.	0		1	
Kaliumnitrit	***	alle	SP	1	0	0	0	1	0	0	0	0	1	1	1	1	1	Ľ		H.	
KNO ₂			0.			ا		Ι΄.	Ĭ	ا ا	Ĭ	۱		ľ		ļ .					
Kaliumpermanganat	wl	10	20	0	0	0	0				0	1	0	\vdash		\vdash	0	0	0	0	3
KMnO ₄	wl	alle	SP	3	1	1	1	0	1	1	1	1	0			0	0	0	0	0	
Kaliumpersulfat	wl	10	50	3	3	0	0	Ė	0		0	3		3	3	3	3	0		3	3
K ₂ S ₂ O ₈																					
Kaliumsilicat			20	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		3	
K₂SiO₃																					
Kaliumsulfat	wl	10	25	3	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	
K ₂ SO ₄	wl	alle	SP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	

WITZENMANN 1501de/19/10/23/pdf **(HYDRA) (HYDRA)** 1501de/19/10/23/pdf *WITZENMANN*

Medium											١	Verk	stoff	е							
Bezeichnung Chemische Formel				Stähle	ro	nich sten Stähl	de			kelba ierur			Kup Legi				Re	ine I	Vleta	ille	
		Konzentration	Temperatur	Unlegierte und niedriglegierte Stähle	ferritische	austenitische	austenitische + Mo	ncoloy 825 2.4858	Inconel 600 2.4816	Inconel 625 2.4856	Hastelloy-C 2.4610 / 2.4819	Monel 2.4360	Cunifer 30 2.0882	ak	ze	er	e		Tes.	Aluminium	<u>.</u>
		%	°C	Unle	ferrit	aust	aust	lucol	Inco	luco	Hast	Mon	Gmi	Tombak	Bronze	Kupfer	Nickel	Titan	Tantal	Alum	Silber
Kalk					_			_		_		_			_	_	_	_		_	
Ca0																					
s. Calciumoxid																					
Kalkmilch			20	0	1	0	0													0	
Ca(OH) ₂			SP	0	1	0	0													0	
Karbolsäure			20	0	0	0	0	0	1	0	0	1	0			0	1	0	0	0	
C ₆ H ₅ (OH)			SP	3	3	3	0				1	0					0	0	0	3	
	wl	90	SP	3	3	3	0				1	0					0	0	0	3	
Ketene			20		0	0	0	0	0	0	0						0	0	0	0	
$(CnH_2n+1)_2C=C=0$			SP		0	0	0	0	0	0	0						0	0	0	0	
Kieselfluor-		100	20	3	3	L	L				1		1	3	1	1				3	
wasserstoffsäure		25	20	3	3	3	3	1	1	1	1	3		3	1	1	1	3		3	
H ₂ (SiF ₆)		70	20	3	3	3	3				1									3	
	Dampf			3	3	3	3				1							2		3	
Kieselfluorsäure																					
s. Kieselfluor-																					
wasserstoffsäure				_	_	_	_		_	_	_	_		L		_		_	_		L
Königswasser			20	3	3	3	3		3		3		3	3	3	3		0	0		1
3HCI+HNO ₃ Kohlendioxid		400	F40		_			_		_	_	_				_					
	tr	100 100	<540 1000	0	1	0	0	0	0	0	0	0				3	0		0		
CO ₂	tr fe	20	25	1	1	0	0	0	0	0	0	0	0	3	1	1			0	3	
	те fe	100	25 25	3	1	0	0	0	1	0	0	1	0	١		0	1	0	0	3	
Kohlenmonoxid	IE.	100	20	0	0	0	0	U	0	0	0	0	U			0	0	0	0	0	0
CO		100	<540	3	0	0	0		3	"	0	1				3	3	0	0	1	3
Kohlensäure		100	\JTU	J	, ,	U	U		J		U	H.				٦	J	, ,	U	<u>'</u>	1
CO ₂																					
s. Kohlendioxid																					
Kraftstoff								\vdash		\vdash											
s. Benzin																					
Kresole		alle	20	3	1	0	0	\vdash	0	0		0					0	0		0	0
C ₆ H ₄ (CH ₃)OH		alle	SP	3	1	1	0		0	0	1	0					0	0		3	0
Kupferacetat	wl	É	20	3	0	0	0	0	1	0	0	1	3		3	3	1	0	0	3	1
(CH ₃ -COO) ₂	wl		SP	3	0	0	0								3			0		3	

Medium											٧	Verk	stoff	е							
Bezeichnung Chemische Formel				Stähle	ro	nich sten Stähl	de				asis- ngen			ferba ierur	asis- ngen		Re	ine I	Vleta	ille	
		% Konzentration	ာ် Temperatur	Unlegierte und niedriglegierte Stähle	ferritische	austenitische	austenitische + Mo	Incoloy 825 2.4858	Inconel 600 2.4816	Inconel 625 2.4856	Hastelloy-C 2.4610 / 2.4819	Monel 2.4360	Cunifer 30 2.0882	Tombak	Bronze	Kupfer	Nickel	Titan	Tantal	Aluminium	Silber
Kupfer(II)-chlorid	wl	1	20	3	3	L	L	0	3	_	1	3	3	_	_	3	3	0	0	3	•
CuCl ₂	wl	kg		3	3	3	3	3	3		0	3				3	3	0	0	3	
Kupfer(II)-nitrat	wl	1	20		0	0	0	0	3		0	3	3			3	3	0	0	3	
Cu(NO ₃) ₂	wl	50	SP		0	0	0		3		1	3					0	0	3		
, 372	wl	kg			0	0	0	0	3		1	3	3			3	3	0	0	3	
Kupfer(II)-sulfat	wl	kg		3	0	0	0	0	3		0	3	3			3	3	0	0	3	
CuSO ₄	wl	hg		3	1	0	0	0	3		0	3				3	3	0	0	3	0
Lactose	wl	_	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	_
C ₁₂ H ₂₂ O ₁₁																					
Leuchtgas				0	0	0	0	0	0	0	0	1	1	0	0	1	1				_
Lithium	Schm		300	0	0	0	0	0	0	0	0	3	3	3	3	3		0		3	
Li																					
Lithiumchlorid	wl	kg		3	3	3	L	0	0	0	0	1					0	0			_
LiCl																					
Lithiumhydroxid	wl	alle	20	1	0	0	0	0	0	0		0					0	0			
LiOH																					
Magnesium	Schm		650		1	3	3	3	3		3	3	3	3	3	3	3	0	0	3	
Mg																					
Magnesiumcarbonat	wl		20	0	0	0	0	0	0	0	0	0	0			0	0	0	0	1	
MgCO ₃	wl		SP	0	0	0	0	0	0	0	0	0	0			0	0	0	0	1	
Magnesiumchlorid	wl	5	20	3	3	L	L	0	0	0	0	0	3			3	0	0	0	3	
$MgCl_2$	wl	5	SP	3	3	3	3	0	0	0	0	0	3			3	0	0	0	3	
	wl	50	SP	3	3	3	3				0							0	0	3	
Magnesiumhydroxid	wl	kg		0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	
Mg(OH) ₂	wl	hg		0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	
Magnesiumnitrat		kg		0	0	0	0	3	3		3	0	3	0	0	3	3	0	0	1	
$Mg(NO_3)_2$													İ								
Magnesiumoxid																					
Mg0													İ								
s. Magnesiumhydroxid																					
Magnesiumsulfat	wl	0,1	20	0	1	0	0				0							0	0	3	
MgSO ₄	wl	5	20	3	1	0	0	0	1	0	0	1	0	3	0	0	1	0	0	0	
	wl	50	SP	3	1	0	0				1		İ					0	0	0	

WITZENMANN 1501de/19/10/23/pdf **(HYDRA) (HYDRA)** 1501de/19/10/23/pdf *WITZENMANN*

Medium											١	Verk	stoff	е							
Bezeichnung Chemische Formel				Stähle	ro	nich sten Stähl	de			kelba	asis- ngen			ferba ierur			Re	ine l	Meta	ille	
		% Konzentration	င္ပံ Temperatur	Unlegierte und niedriglegierte Stähle	ferritische	austenitische	austenitische + Mo	Incoloy 825 2.4858	Inconel 600 2.4816	Inconel 625 2.4856	Hastelloy-C 2.4610 / 2.4819	Monel 2.4360	Cunifer 30 2.0882	Tombak	Bronze	Kupfer	Nickel	Titan	Tantal	Aluminium	Silber
Maleinsäure	wl	5	20	3	0	0	0	0	1	0	0	1	0				1			0	
HOOC-HC=CH-COOH	wl	50	100	3	0	0	0		1											0	
Maleinsäurehydrid		100	285								0										
Malonsäure			20			1	1	1	1	1	1	1					1	1		1	
CH ₂ (COOH) ₂			50					1	1	1	1	1					1	1			
			100					3	3		3	3					3	3			
Mangan(II)-chlorid	wl	5	100	3	L	L	L	1	1	1		1	3			3	1	0	0		
MnCl ₂	wl	50	20	1	3	L	L	1	1	1		1	3			3	1	0	0		
Mangan(II)-sulfat		kg			0	0	0	0	0	0	0	0				0	0	0			
MnSO ₄																					
Meerwasser																					
bei Strömungs-																					
geschwindigkeit (v):																					
v<1.5m/s			20	1	L	L	L	0	L	0	0	L	1			1	L				
1.5 <v<4.5m s<="" td=""><td></td><td></td><td>20</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td></td><td>3</td><td>1</td><td></td><td></td><td></td><td></td></v<4.5m>			20	1	0	0	0	0	0	0	0	0	0	0		3	1				
Melasse					0	0	0	0	0	0	0	0					0	0	0	0	
Menthol					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
C ₁₀ H ₁₉ OH																					
Methan			200	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0	
CH ₄			600								0						0				
Methanol																					
s. Methylalkohol																					
Methylacetat		60	20	0		0	0				0							0	0		
CH ₃ COOCH ₃		60	SP	0		0	0				0		L		L			0	0		
Methyldehyd																					
s. Formaldehyd																					
Methylalkohol		<100	20		0	0	0	0	0	0	0	0				0	0	0	1		
CH ₃ OH		100	SP	1	3	1	1		0	0	0	0	L	0	0	0	0	0	0	1	0
Methylamin	wl	25	20	1	0	0	0	0		0	0	3	3	3	3	3		0		0	
CH ₃ -NH ₂																					
Methylchlorid	tr	100	20	0	0	0	0		0	0	0	0		0	0	0	0	0		0	
CH₃CI	fe		20	3	L	L	L		0	0								0		3	
	fe		100		L	L	L		0	0						1		0		3	

Medium													١	Verk	stoff	е							
Bezeich Chemiso	nung he Forme	el				Stähle	ro	nich sten Stähl	de			celba ierur				ferba ierur			Re	ine I	Vleta	ille	
				% Konzentration	ථ Temperatur	Unlegierte und niedriglegierte Stähle	ferritische	austenitische	austenitische + Mo	Incoloy 825 2.4858	Inconel 600 2.4816	Inconel 625 2.4856	Hastelloy-C 2.4610 / 2.4819	Monel 2.4360	Cunifer 30 2.0882	Tombak	Bronze	Kupfer	Nickel	Titan	Tantal	Aluminium	Cilhor
Methyle	nchlorid		tr		20	0	L	L	L						0					0		0	Г
CH ₂ Cl ₂			fe		20		L	L	L	0		1	1	1	0			0	1	0		3	
			fe		SP		L	L	L	1		1	1	1	1			0	1	0		3	
Milchsä	ure		wl	1	20	3	3	0	0	0		0	0		0	3	1	0		0	0	0	
$C_3H_6O_3$			wl	alle	20	3	3	1	0				0		١.					0	0	3	
			wl	10	SP	3	3	3	3	0	3		0	3	1			1	3	0	0	3	
			wl	alle	SP	3	3	3	1				0							0	0	3	L
Milchzu																							
s. Lactos Mischsi												_											L
HNO ₃	H ₂ SO ₄	H ₂ 0																					
%	%	%																					
90	10	70			20	0		0	0					3		3	3	3	3	0		1	3
50	50	_			20	ľ		0	0					ľ		ľ	ľ		ľ	0		3	Ι,
50	50	_			90		3	1	1											Ů		ľ	
50	50	_			120		3	3	3														
38	60	2			50		3	0	0														
25	75	_			50		3	1	0														
25	75	_			90		3	3	1														
25	75	-			157		3	3	3														
15	20	65			20	3	3	0	0														
15	20	65			80		3	1	0														
10	70	20			50		3	0	0														
10	70	20			90		3	1	0														
5	30	65			20	3	3	0	0														
5	30	65			90	3	3	0	0														
5	30	65			SP	3	3	3	1														
5	15	80			134		3	1	1														
	loressig	säure																					
s. Essigs					L			L														L.	L
Naphtal	in			100	20	0	0	0	0											0		1	
C ₁₀ H ₈				100	390	0	0	0	0			_											L
Naphtal	inchlorid			100	45								0										
				100	200								0										

1501de/19/10/23/pdf WITZENMANN 593 592 WITZENMANN 1501de/19/10/23/pdf (HYDRA[®]) (HYDRA®)

Medium											١	Verk	stoff	e							
Bezeichnung Chemische Formel				Stähle	ro	nich sten Stähl	de			kelba				ferba			Re	ine I	Meta	ille	
		% Konzentration	ာိ Temperatur	Unlegierte und niedriglegierte Stähle	ferritische	austenitische	austenitische + Mo	Incoloy 825 2.4858	nconel 600 2.4816	Inconel 625 2.4856	Hastelloy-C 2.4610 / 2.4819	Monel 2.4360	Cunifer 30 2.0882	Tombak	Bronze	Kupfer	Nickel	Titan	Tantal	Aluminium	Silber
Naphtalinsulfonsäure		100	20	0	-	0	0	_	_	-	0	_		_		_	_	_	_	1	0,
C ₁₀ H ₇ SO ₃ H		100	SP		3	3	3				0										
Naphtensäure		100	20		ī	L	Ť	0	0	0	_	0					1			0	
Natrium			200	0	0	0	0											0		1	
Na	Schm		600	3	1	0	0											0			
Natriumacetat	wl	10	25	0	0	0	0		0	0	0	0				0	0	0	0	0	0
CH ₃ -COONa	wl	hg		3	0	0	0				0							0	0		
Natriumaluminat		100	20	0	0	0	0											0			
Na ₃ AIO ₃	wl	10	25	0	0	0	0				1							0		3	
Natriumarsenat	wl	kg		0	0	0	0											0		0	
Na_2HAsO_4																					
Natriumbicarbonat		100	20		0	0	0											0		0	
NaHCO ₃	wl	10	20	0	0	0	0	0	1	1	1	1	0	3	1	1	1	0		0	
	wl	kg			0	0	0	0	1	0	0	1	0			0	1	0	0	1	
	wl	hg			0	0	0				1							0			
Natriumbisulfat	wl	alle	20	3	3	3	0	0	1	1	1	1	3	3	1	1	1	0	0	0	
NaHSO ₄	wl	alle	SP	3	3	3	1	0	1	1	1	1	3	3	1	3	1	0	0	1	
Natriumbisulfit	wl	10	20	3	3	0	0				1			1	0	3	0	0		0	
NaHSO ₃	wl	50	20	3	0	0	0				1	0		1	0	3	0	0			
	wl	50	SP	3	3	3	0	_		_		0				L		0			
Natriumborat	wl	kg			0	0	0	0		0	0	1	0			0		0	0	1	
Na ₂ B ₄ O ₇ 10 H ₂ O (Borax)	Schm	alla	20	3	3	3	3			_	3		_			_		0		2	<u> </u>
Natriumbromid NaBr	wl wl	alle alle	20 SP	3	3	3	L				1							0		3	
Natriumcarbonat	wl	alle 1	20	3	0	0	0	0	1	0	0	0	0			0	0	0	0	2	<u> </u>
Na ₂ CO ₃	wl	alle	SP	٦	0	0	0	0	0	0	0	١ ا	U			U	0	0	0	3	
1¥a2∪U3	wl	alle	400	3	3	3	3	"	U	"	U						0	"	"	٥	
	Schm		900	3	3	3	3					0					0				
Natriumchlorid	wl	0.5	20	J	L	L	L	0	1	0	0	0	0			\vdash	1	0	0	-	\vdash
NaCl	wl	2	20		ו	L	L	0	1	0	0	0	0				1	0	0		
	wl	kg	20	3	L	L	L	0	1	0	0	0	0			0	1	0	0	2	0
	wl	hg		3	3	3	L	0	1	0	1	0	0			0	1	0	0	3	0

Medium											٧	Verk	stoff	е							
Bezeichnung Chemische Formel				Stähle	ro	nich sten Stähl	de				asis- ngen			ferba ierun			Re	ine l	Vleta	ille	
		% Konzentration	ိ Temperatur	Unlegierte und niedriglegierte Stähle	ferritische	austenitische	austenitische + Mo	Incoloy 825 2.4858	Inconel 600 2.4816	Inconel 625 2.4856	Hastelloy-C 2.4610 / 2.4819	Monel 2.4360	Cunifer 30 2.0882	Tombak	Bronze	Kupfer	Nickel	Titan	Tantal	Aluminium	Silber
Natriumchlorit	tr	100	20	3	L	L	0		0					-				0			
NaClO ₂	wl	5	20			3	L											0			
	wl	5	SP			3	3				1							0			
	wl	10	80	3		3	L		0		1							0			
Natriumchromat	wl	alle	SP	0	0	0	0	0	0	0	0	0	0	0	0	0				0	
Na ₂ CrO ₄				L	L	L		L	L	L	L	L	L			L	L	L			L
Natriumcyanid	Schm		600	1								3	3	3	3	3				3	3
NaCN	wl	kg		1	0	0	0					3	1	3	3	3	0	0		3	3
Natriumfluorid	wl	10	20	0		0	0								3					0	
NaF	wl	10	SP	0		0	0														
	wl	kg				S	S													0	
Natriumhydrogensulfat																					
s. Natriumbisulfat																					
Natriumhydrogensulfit																					
s. Natriumbisulfit																					
Natriumhydroxid	fest	100	alle	0	0	0	0		0	0	0	0					0				0
NaOH	wl	<10	<60	0	0	0	0		0	0	0						0				
	wl	<10	<sp< td=""><td>3</td><td>3</td><td>0</td><td>0</td><td></td><td>0</td><td>0</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td></sp<>	3	3	0	0		0	0	0						0				
	wl	<20	<60	0	0	0	0		0	0	0						0				
	wl	<20	<sp< td=""><td>3</td><td>3</td><td>0</td><td>0</td><td></td><td>0</td><td>0</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td></sp<>	3	3	0	0		0	0	0						0				
	wl	<40	<60	0	0	0	0		0	0	0						0				
	wl	<40	<100	3	3	0	0		0	0	0						0				
	wl	<40	>100	3	3	3	3		0	0	0						0				
	wl	<50	<60	0	-	-	1 -		0	0	0						0				
	wl	<50	<100 >100	3	3	0	0		0	0	0						0				
	wl	<50		3	3				0		0						0				
	wl	<60	<90 <140	3	3	0	0		0	0	0						0				
	wl	<60		3	3	3	3										-				
Natriumbunaahla-it	wl	<60 5	>140	3	3	3	3 L	0	3	0	3	3	3			3	3	0		3	
Natriumhypochlorit	wl			3	ا ا			U				ا ا	3			٥	3	-		3	
NaOCI Natriumhyposulfit	wl	10 alle	50 20	3	3	L 0	L	0	0	1	1	1	3			3	1	0	0	3	
watrummyddsumt		alle	20	l	J	U	ΙU	U	1 1		1 1		J			J	1	I	U		1

Medium											١	Verk	stoff	е							
Bezeichnung Chemische Formel				Stähle	ro	nich sten Stähl	de				asis- ngen		Kup Legi				Re	ine I	Meta	alle	
		Konzentration	Temperatur	Unlegierte und niedriglegierte	ferritische	austenitische	austenitische + Mo	Incoloy 825 2.4858	Inconel 600 2.4816	Inconel 625 2.4856	Hastelloy-C 2.4610 / 2.4819	Monel 2.4360	Cunifer 30 2.0882	Tombak	Bronze	Kupfer	Nickel	=	Tantal	Aluminium	ier
		%	°C	틀	-	_		_	_	_	_	ŝ	3	둳	Bro	-	Ξ̈́	Titan	_	Alu	Silber
Natriumjodid NaJ					L	L	L	0	0	0	0					0			1		
Natriumnitrat	wl	5	20	3	0	0	0	0	0	0	0	1	0			0	1	0	0	0	
NaNO ₃	wl	10	20	1	0	0	0	0	0	0	1	1	0	3	1	1	1	0	0	0	
	wl	<10	SP	3	0	0	0				0						1	0	0	3	3
	wl	30	20	1	0	0	0	0	0	1	1	1	0				1	0	0	0	
	wl	30	SP	1	0	0	0	0	0		3	1					1	0	0	0	
	Schm		320	3	0	0	0				0						1	0	0	0	3
Natriumnitrid	wl		20			0	0	1	0	0	0	0	0			1	3	0	0	1	
NaNO ₂																					
Natriumperborat	wl	10	20	3	0	0	0				1							1			
NaBO ₂	wl	10	SP	3	0	0	0	ļ.,		_	1	_				_		1			
Natriumperchlorat	wl	10 10	20 SP	3	3	0	0	1			1							0			
NaClO ₄ Natriumperoxid	wl	10	20 20	3	1	0	0	1	1	1	1	0	3			3	0	3	3	3	3
Na ₂ O ₂	wl	10	SP SP	3	3	0	0	1	1	1	1	0	3			3	1	3	3	3	3
1Va ₂ O ₂	Schm	10	460	3	"	"	"	3	1	l '	3	3	3			٦	0	"	٦	٦	٦
Natriumphosphat	wl	10	20	\vdash	0	0	0	0	0	0	0	0	0	3	1	1	0	0	0	0	
Na ₂ HPO ₄	wl	10	SP		0	0	0	0	0	0	0	0				3		0	0	1	
	wl	kg			0	0	0	0	0	0	0	0					0	0	0	0	
Natriumsalicyat	wl	alle	20		0	0	0	0			0					0	0	0		0	
C ₆ H ₄ (OH)COONa																					
Natriumsilicofluorid	wl	kg		3	3	3	3	0	0	1	1	0				0				1	
Na ₂ (SiF ₆)																					
Natriumsulfat	wl	10	20	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Na ₂ SO ₄	wl	kg		3	1	0	0	0	1	0	0	1	0			0	1	0	0	0	
N	wl	hg	20	3	3	0	0	0	0	0	0	0					1	0	0	1	
Natriumsulfid Na ₂ S	wl	1	20 20	3	0	0	0	0	0	0	0	1	3			3	1	0	0	1	
INd20	wl wl	kg hq	20	3	3	3	1	١ ا	'	U	U		3			١		0	U	3	
Natriumsulfit	wl	10	20	3	1	0	0	\vdash		\vdash		0	1	3	1	1		0		0	\vdash
Na ₂ SO ₃	wl	50	SP	3	3	0	0					"	'	٦	'	'		0		3	
Natriumsuperoxid		"	ļ .	Ť	۳	Ť	۳	\vdash								\vdash		Ť		Ť	
s. Natriumperoxid																					

Medium											٧	Verk	stoff	e							
Bezeichnung Chemische Formel				Stähle	ro	nich sten Stähl	de			kelba ierur				ferba ierur			Re	ine I	Meta	lle	
		Konzentration	ភិ Temperatur	Unlegierte und niedriglegierte Stähle	ferritische	austenitische	austenitische + Mo	Incoloy 825 2.4858	nconel 600 2.4816	Inconel 625 2.4856	Hastelloy-C 2.4610 / 2.4819	Monel 2.4360	Cunifer 30 2.0882	Tombak	Bronze	Kupfer	Nickel	Titan	Tantal	Aluminium	Cilhor
Natriumtetraborat		70	-	_	-g	a	ਭ	트	트	트	Ξ	2	٥	Ľ	8	고	2	F	120	A	Ü
s. Borax																					
Natriumthiosulfat	wl	1	20	1	0	0	0					0			\vdash		0	0		0	_
Na ₂ S ₂ O ₃	wl	10	20	3	0	0	0					U					"	0		0	
14020203	wl	25	SP	3	L	L	L										0	0		1	
	•••	kg		3	3	0	0		1			1	3			3	1	0	0	0	
Natronlauge																					Т
s. Natriumhydroxid																					
Natronsalpeter																					Г
s. Natriumnitrat																					
Nickel(II)-chlorid	wl	10	20	3	L	L	L	0	1	0	0	1	1	3	1	3	1	0			(
NiCl ₂	wl	10	SP	3	3	L	L				0							0			
		ges	70	L		L	0				1										L
Nickel(II)-nitrat	wl	10	25	3	0	0	0	0	0	0	0	3	3			3	3	0	0	3	
Ni(NO ₃) ₂	wl	<100	25 20	3	0	0	0	0	3	1	1	3	_		_	3	3	0	0	3	L
Nickel(II)-sulfat NiSO4	wl wl		SP	3	0	0	0	U	1 0	1	1	1					3	0			
Nitrobenzoesäure	wl		20	1	0	0	0	0	0	0	0	0	0	0	0		0	U		0	H
C ₆ H ₄ (NO ₂)COOH	WI		20	'	U	٥	0	U	0	U	0	U	0	U	U		0			U	i
Nitrobenzole				0	0	0	0	0	0	0	1	0	0	0	0	0	0	0		0	-
C ₆ Hx(NO ₂)y				۱	١	ľ	١	ا ا	ا	ľ	ľ	١	ا ا	ľ	۱	١	ا ا				
Nitroglycerin			20	0	0	0	0													0	Т
C ₃ H ₅ (ONO ₂) ₃																					
Ölsäure																					Г
s. Fettsäure																					
Oleum																					
s. Schwefeltrioxid																					L
Oxalsäure	wl	alle	20	3	3	0	0	1	1	0	0	1					3	0	0	0	
$C_2H_2O_4$	wl wl	10 hg	SP	3	3	3	3	0	1	0	0	1	1			1	3	3	0	3	
Ozon	VVI	iiy		٦	0	0	0	0	0	0	0	0				1		0		0	H
Paraffin			20	0	0	0	0	۳	Ť	۳	Ť	-				<u> </u>		0		0	Н
CnH ₂ n ₊₂	Schm		120	0	0	0	0						0	0	0	0		0		0	

596 *WITZENMANN* 1501de/19/10/23/pdf **HYDRA** 1501de/19/10/23/pdf *WITZENMANN*

Medium											_	Verk	stoff	е							
Bezeichnung Chemische Formel				Stähle	ro	nich sten Stähl	de			kelba				ferba ierun			Re	ine I	Vleta	ille	
		% Konzentration	ဘိ Temperatur	Unlegierte und niedriglegierte Stähle	ferritische	austenitische	austenitische + Mo	Incoloy 825 2.4858	Inconel 600 2.4816	Inconel 625 2.4856	Hastelloy-C 2.4610 / 2.4819	Monel 2.4360	Cunifer 30 2.0882	Tombak	Bronze	Kupfer	Nickel	Titan	Tantal	Aluminium	Silber
Perchloräthylen			20	0	0	0	0	_		_		_		0	0	0	0	_		0	-
C_2CI_4			SP	0	1	1	1							1	1	0	0			3	
	fe			3	L	L	L														
Perhydrol																					
s. Wasserstoffperoxid																					
Petroleum			20 SP	0	0	0	0		0	0	0	0	0	1	0	0	0	0		0	
Phenol																					
s. Karbolsäure																					
Phloroglucin																					
$C_6H_3(OH)_3$			20		0	0	0	0	0	0	0	0						0	0	0	
Phosgen	tr																				
COCI ₂			20		0	0	0	0	0	0	0	0						0	0	0	
Phosphor	tr																				
Р			20	0	0	0	0														
Phosphorpentachlorid	tr																				
PCI ₅		100	20	0	0	0					0	_				3	1				
Phosphorsäure	wl	10	20	3	0	0	0	0	0	0	0	1	3			3	0	0	0	3	
H ₃ PO ₄	wl	30	20 SP	3	3	0	1				1	1	1	2	1	3	3	0	0	3	
	wl wl	60	SP	3	3	3	3				1	'	'	4	'	٥	٥	3	0	J	
	wl	80	20	3	3	1	0		0	0	0				0	1		3	0		0
	wl	80	SP	3	3	3	3		0	"	3				1		3	3	0		1
Phatalsäure u.	***	00	20	0	ř	0	0	\vdash	۳		0	0		0	0	0	0	۳	۳	0	0
Phatalsäureanhydrid			200		0	3	0				0	0		ا ّا		0	0				0
C ₆ H ₄ (COOH) ₂	tr		SP			0	0	0								0			0	0	
Pikrinsäure	wl	3	20	3	0	0	0											0		1	0
$C_6H_2(OH)(NO_2)_3$	wl	kg	450	3	0	0	0	3	3		0	3	3	3	3	3	3	0		0	
	Schm		150	3	0	0	0	_	_									0	_	3	
Propionsäure s. Essigsäure																					
Pyridin	tr		20		0	0	0	\vdash				\vdash				\vdash		0		0	
C ₅ H ₅ N		alle	SP		0	0	0		0	0	0	0					0	0		0	

Medium												Verk	stoff	е							
Bezeichnung Chemische Formel				Stähle	ro	nich sten Stähl	de				asis- ngen			ferba ierun			Re	ine l	Meta	alle	
		% Konzentration	ကို Temperatur	Unlegierte und niedriglegierte Stähle	ferritische	austenitische	austenitische + Mo	Incoloy 825 2.4858	Inconel 600 2.4816	Inconel 625 2.4856	Hastelloy-C 2.4610 / 2.4819	Monel 2.4360	Cunifer 30 2.0882	Tombak	Bronze	Kupfer	Nickel	Titan	Tantal	Aluminium	Silber
Pyrogallol		alle	20	3	0	0	0				0				0			0		0	
C ₆ H ₃ (OH) ₃		alle	SP	3	0	0	0				1				0			0		0	
		100	20	0	L	L	L		0	0	0	3	3	3	3	3	0	0		1	3
Quecksilber	tr	alle	<500	1	1	1	0		0	0	0	3	3	3	3	3		0	0	3	Т
Hg																					
Rauchgase																					
s. Verbrennungsgase																					
Salicylsäure	tr	100	20	1	0	0	0	0	1	0	0	1	0			0	1	0	0	0	
HOC ₆ H ₄ COOH	fe	100	20	3		0	0				1	0						0			
	wl	kg		3		0	0	0	1	0	0	0	0				0	0		1	
Salmiak																					
s. Ammoniumchlorid																					
Salmiakgeist																					
s. Ammoniumhydroxid																					L
Salpeter																					
s. Kaliumnitrat					_				_				L.			_		_		_	_
Salpetersäure		1	20	3	0	0	0				0	0	1	3	3	3	0	0	0		
HNO ₃		1	SP	3	0	0	0	0			1	3					3	0	0	,	
		5	20	3	0	0	0	0	3		0	3	3			3	3	0	0	3	
		5	SP	3	1	0	0				1						,	0	0		
		10	SP	3	1	0	0				1	3					3	0	0		
		15 25	SP SP	3	3	0	0				3							0	0		
		50	SP SP	3	3	3	1	0	,		3	3	3			3	3		0	3	
		65	20	3	0	0	0	0	3		0	3	ا ا			ا ا	3	1 0	0	1	
		65	SP SP	3	3	3	3	0	3		3	3	3			3	3	0	0	3	
		99	SP SP	3	3	3	3	0	3		3	3	3			3	3	0	3	3	
		20	290	3	3	3	3	U	3		3	ا ا	٦			١٥	٥	3	0		
		40	290	3	3	3	3				3							3	0		
Salpetrige Säure		40	200	J	٦	J	J				J							J	U		-
HNO ₂																					
ähnl. Salpetersäure																					

Medium		_			_	_	_	_	_	_		Verk	stoff	e	_	_	_	_	_	_	_
Bezeichnung Chemische Formel				Stähle	ro	nich sten Stähl	de				nsis- ngen		Ku	pferl -Leg unge	ie-		Re	ine I	Vleta	ille	
		Konzentration	Temperatur	Unlegierte und niedriglegierte Stähle	ferritische	austenitische	austenitische + Mo	Incoloy 825 2.4858	Inconel 600 2.4816	Inconel 625 2.4856	Hastelloy C 2.4610 / 2.4819	Monel 2.4360	Cunifer 30 2.0882	Tombak	Bronze	Kupfer	Nickel	an	Tantal	Aluminium	Silber
0.1. "		%	°C			_	_	Ĕ	Ĕ	Ĕ		ž	ਤ	卢	Bu	₹		Titan		Ali	S
Salzsäure HCI		0,2	20 20	3	3	L 3	L				0						L	0	0		
пы		0,5	SP SP	3	3	3	3				3							1	0		
		1	20	3	3	3	L	3	3		0	1	3	3	3	3	1	0	0	3	
		2	65	3	3	3	3	"	J		0	Ι΄	J	٦	,	"	١.	0	0	3	
		5	20	3	3	3	3	3	3		0	1	3		1	3	3	ľ	3	١	
		15	20	3	3	3	3	3	3		0	3	3			3	3	3	0	3	0
		32	20	3	3	3	3	-	-		0	-	_			3		3	0	3	1
		32	SP	3	3	3	3				3							3	0	3	
Salzsäuregas																					
siehe Chlorwasserstoff																					
Sauerstoff			500	1	0	0	0					0			3	3				0	3
0																					
Schwefel	tr	100	60	0	0	0	0				0						0				
S	Schm		130	1	0	0	0		0		0	3	3	3	3	3	3	0			3
	Schm		240	3	0	0	0				0					3		0			
	fe	400	20	3	2	1	0				0	3	3	3	3	3	3	0			
Schwefeldioxid	tr	100	20	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
SO ₂	tr	100	60	3	3	1	1				0							0		0	
	tr	100	400	3	3	3	0				1			3				0		0	3
	tr	100	800 20	3	3	3	3		0	_	3	0	2	,	1	,	3	0	0	0	
	fe fe	100	60	3	3	3	0	0	U	0	0	١	3	3	'	3	U	0	٦	3	
	те fe	100	70	3	3	3	3				0							0		3	
	IE	100	//	J	J	J	J				U			_				U		J	

Medium											V	Verk	stoff	е							
Bezeichnung Chemische Formel				Stähle	ro	nich sten Stähl	de			kelba ierur			sis	pferl -Leg unge	jie-		Re	ine	Meta	ille	
		% Konzentration	ာိ Temperatur	Unlegierte und niedriglegierte Stähle	ferritische	austenitische	austenitische + Mo	Incoloy 825 2.4858	Inconel 600 2.4816	Inconel 625 2.4856	Hastelloy C 2.4610 / 2.4819	Monel 2.4360	Cunifer 30 2.0882	Tombak	Bronze	Kupfer	Nickel	Titan	Tantal	Aluminium	Silber
Schwefelsäure		0,05	20	3	1	a 0	a	흐	=	흐	풀	Σ	ರ	은	<u>~</u>	ヹ	Z	0	0	_	Si
H ₂ SO ₄		0,05	SP SP	3	1	1	0											1	0	3	
n ₂ SU ₄		0,05	20	3	3	0	0											0	0	ا 1	
		0,1	SP	3	3	3	0											1	0	3	
		0.8	SP	3	3	3	3											1	0	3	
		1	20	3	3	1	0		1	0	0	1	3			1	0	0	0	1	
		3	SP	3	3	3	3				1		3			'	-	1	0	3	
		5	SP	3	3	3	3	1	3		3	1	3			3	3	3	0	3	
		7,5	20	3	3	1	0											1	0	1	
		10	SP	3	3	3	3	1	3		3	3	3			3	3	3	0	3	
		25	20	3	3	3	3				0		3					3	0	1	
		25	SP	3	3	3	3				3		3					3	0	3	
		40	20	3	3	3	3				0	1	3	3	3	3		1	0	1	
		40	SP	3	3	3	3				3		3					3	0	3	1
		50	20	3	3	3	3	1	3		0	3	3			3	3	3	0	3	
		50	SP	3	3	3	3	3	3		3	3	3			3	3	3		3	
		60 80	20 20	3	3	3	3				0	1	3	3	3	3	0	3	0	3	
		90	20	3	3	1	0				0	l '	ا	٥	l '	'		3	0	3	
		96	20	1	1	1	0				0	3	3			1	1	3	0	3	3
Schweflige Säure	wl	1	20	3	3	0	0		1	\vdash	0	3	٦	\vdash	\vdash	H.	3	۲	0	1	
H ₂ SO ₃	wl	kg		3	3	0	0				0	3					-	1	0	3	
	wl	hg		3	3	1	0				1								0	3	
Schwefeltrioxid	fe	100	20																	3	
SO ₃	tr	100	20	0		L		2	3	L	0	3	2	0	0	0	3		3	0	
Schwefelwasserstoff	tr	100	20	1	S	0	0	0	1		0	1	0	0	0	0	0	0	0	0	1
H ₂ S	tr	100	100	3	S	0	0									0				0	
	tr	100	200	3	3	0	0										١.		0		
0	fe		20	3	3	0	0	0	0	0	0	0	3	3	3	3	1	0	0	0	3
Seeklima Seewasser	fe	_		2L	1L	1L	0	0	0	0	0	0	0	1	0	0	0	0	0	2	1
s. Meerwasser																					
Seife	wl	1	20	0	0	0	0	\vdash	0	0		0	0	1	0	0	0	0	\vdash	0	_
Outo	wl	1	75	0	0	0	0		"	0		0	0	1	0	0	0	"		0	
	wl	10	20	0	0	0	0					Ĭ	ا ا		١		0	0		0	

Bezeichnung Chemische Formel		Konzentration	Temperatur	Unlegierte und niedriglegierte Stähle	ro	nich sten Stähl	de			kelba ierun			sis	pferl -Leg	ie-		Re	ine I	Vleta	lle	
		Konzentration	nperatur	d niedriglegierte													_				
				egierte un	ferritische	austenitische	austenitische + Mo	Incoloy 825 2.4858	Inconel 600 2.4816	Inconel 625 2.4856	Hastelloy C 2.4610 / 2.4819	Monel 2.4360	Cunifer 30 2.0882	Tombak	nze	ifer	kel	ш	tal	Aluminium	ier
	_	%	°C					을	_			Š		Ton	⇔ Bronze	Kupfer	Nickel	Titan	Tantal	Alu	Silber
Silbernitrat w	. 1	10	20	3	0	0	0	0	1	1	1	3	3	3	3	3	3	0	0	3	
AgNO ₃ w	.	10	SP	3	0	0	0										3	0			
W	. 1	20	60	3	0	0	0											0			
W	.	40	20	3	0	0	0				1							0			
Stearinsäure Sch	ım	100	250	3	3	0	0		0	0	0	0	1	3	1	1	0	0		0	0
		100	20 95	3	0	0	0	0	1	U	0	1	1	3	'	0	1	0	0	3	U
CH ₃ (CH ₂) ₁₆ COOH		100	180	٥	U	U	U	١ ا	'		1	'	'			U	'	0	U	3	
Stickstoff	-	100	20	0		0	0		0	0	0	0	0	0	0	0	0	0		0	0
N		100	900	1		١	U		U	٥	U	U	U	٥	U	0	3	۰		U	"
Tannin	\dashv	100	300	i.				\vdash									-				\vdash
s. Gerbsäure																					
Teer	\dashv		20	0	0	0	0						0	1	0	0		0		1	
Terpentinöl	\exists	100	20	3	0	0	0						0	1	0	0		0		0	
•		100	SP	3	0	0	0						0	1	0	0		0		0	
Tetrachloräthan																					
s. Tetrachlorkohlenstoff																					
Tetrachlorkohlenstoff t	r		20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
CCI ₄ t	r		SP	1	0	0	0				0	0		0	0	0	0	0		3	
fe	,		25	1	1	1	1	0	0	0	0	0	0			1	0	0		3	
fe	9		SP	3			1													3	
Tinte																					
s. Gallussäure				_	_	_		_					_			_	_	_		_	
Toluol		100	20	0	0	0	0					0	0	0	0	0		0		0	
C ₅ H ₅ -CH ₃	_	100	SP	0	0	0	0					0	0	0	0	0		0		0	
Treibstoffe																					
s. Benzin s. Benzol																					
s. Benzoi Benzin-Alkohol-Gemisch			20		0	0	0	0	0	0	0	0		0	0	0	0			0	
Dieselöl			20		0	0	0	0	0	0	0	0		0	0	0	0			0	
Trichloracetaldehyd	\dashv		20	\vdash	U	U	U	U	U	U	U	U	\vdash	U	U	U	U			U	\vdash
s. Chloral																					

Medium												Verk	stoff	е							
Bezeichnung Chemische Formel				Stähle	ro	nich sten Stähl	de			kelba ierur			sis	pferl -Leg inge	ie-		Re	ine l	Vleta	lle	
		% Konzentration	ာ် Temperatur	Unlegierte und niedriglegierte Stähle	ferritische	austenitische	austenitische + Mo	Incoloy 825 2.4858	Inconel 600 2.4816	Inconel 625 2.4856	Hastelloy C 2.4610 / 2.4819	Monel 2.4360	Cunifer 30 2.0882	Tombak	Bronze	Kupfer	Nickel	Titan	Tantal	Aluminium	Silher
Trichloräthylen	rein	100	20	0	0	0	0		_		0	_	0	0	0	0	0	0	_	0	
CHCI=CCI ₂	rein	100	SP			0	0				0		0	0	0	0	0	0		0	
2	fe		20	3	3	L	L				0		1	3	1	1	0	0		3	
	fe		SP	3	3	L	Ĺ				0		1	3	1	1	0	0		3	
Trichloressigsäure				Ť	۲	Ė	Ė				Ť		H	Ť	Ė	Ė	Ť	Ť	H		_
s. Chloressigsäure																					
Trichlormethan											\vdash										
s. Chloroform																					
Trikesylphosphat				0	0	0	0	0	0	0	0	\vdash	H		\vdash	0					0
Trinitrophenol				Ů	۳		۳		Ť		۳					۳					_
s. Pikrinsäure																					
Überchlorsäure		10	20	3	3	3	3						Н		\vdash	\vdash		0		3	
HCIO ₄		100	20	3	3	3	3											0		J	
Unterchlorige Säure		100	20	3	3	3	3				_				_			0		3	_
HOCI			20	3	"	J	٦											ľ		J	
Verbrennungsgase																					
frei von S bzw.																					
H ₂ SO ₄ und Cl			≤400	0	0	0	0				0										
ngoog unu ol			2700	0	"	U	١				١										
mit S bzw.			>STP																		
H ₂ SO ₄ und Cl			und																		
112004 unu oi			±400	0	0	0	0				0										
Vinylchlorid	tr		20	0	0	0	0	\vdash			0				0	\vdash				0	_
CH ₂ =CHCl	u		<400	0	0	0	0				0				١		0	0			
Wasserdampf			V-100	-	۳	-	ř	\vdash	\vdash	\vdash	ř	\vdash	H		 	\vdash	-	Ť			
O ₂ <1ppm;Cl<10ppm			<560	1	1	1	0				0							0			
0 ₂ >1ppm;Cl<10ppm	-		<315	S	s	S	S				0						0	0			
0 ₂ >15ppm;Cl<3ppm	-		>450	S	S	S	S				0							0			
Wasserstoff *)			<300	0	۳	0	0				0			0	-	0		۲		0	
H			>300	3		0	0				0			0		"				0	
Wasserstoffperoxid		alle	20	3	3	0	0	0	1	0	0	1	3	3	3	\vdash	3	1	3	0	0
H ₂ O ₂		and	20	٦	"	U	١	U	l '	U	"	'	٦	J	٦		J	l '	J	U	U
Wein		-	20	3	0	0	0	\vdash	0	\vdash	\vdash	\vdash		3	3	\vdash	3		0	3	_
AACIII			SP SP	3	0	0	0		0					3	3		3		0	3	

^{*)} Hinweis: Alle Werkstoffe neigen unter Wasserstoffatmosphäre zu Versprödung. Für Bauteile mit zyklischer Belastung sollten die Werkstoffe 1.4404 oder 1.4435 gewählt werden.

602 *WITZENMANN* 1501de/19/10/23/pdf **(HYDRA) (HYDRA)** 1501de/19/10/23/pdf *WITZENMANN*

604 WITZENMANN

Medium											٧	Verk	stoff	е							
Bezeichnung Chemische Formel				Stähle	ro	nich sten Stähl	de				asis- ngen		sis	pfer -Leg unge	jie-		Re	ine l	Meta	ille	
		Konzentration	Temperatur	Unlegierte und niedriglegierte Stähle	ferritische	austenitische	austenitische + Mo	Incoloy 825 2.4858	Inconel 600 2.4816	Inconel 625 2.4856	Hastelloy C 2.4610 / 2.4819	Monel 2.4360	Cunifer 30 2.0882	Tombak	Bronze	fer	kel	=	tal	Aluminium	er
		%	°C	_								_		Tom		Kupfer	Nickel	Titan	Tantal	_	Silber
Weinsäure	wl	10	20	1	0	0	0	0	1	0	0	1	0	3	0		1	0	0	3	
	wl	10	SP	3	1	0	0	0	3		1	3	0	3			3	1	0	3	
	wl	25	20	3	1	0	0		0		0	0	0			0		0	0	3	
	wl	25	SP	3	3	1	0		0		1	1	0			1		1	0	3	
	wl	50	20	3	3	0	0				0		0					0	0	3	
	wl	50	SP	3	3	3	3				1		0					3	0	3	
	wl	5	20	3	L	L	L	0	1	0	0	1	3				1	0	0	3	
Zinkchlorid	wl	5	SP	3	3	3	3	0	3		1	3	3				1	0	0	3	
ZnCl ₂	wl	10	20	3	L	L	L					3					0	0	0	0	
	wl	20	20	3	L	L	L						3	3	3			0	0		
	wl	75	20	3	3	L	L											0	0		
	wl	2	20	3	0	0	0				0		0					0	0	0	
Zinksulfat	wl	20	SP	3	0	0	0				1							0	0	3	
ZnSO ₄	wl	30	SP	3	3	0	0				1							0	0	3	
	wl	kg		3	0	0	0	0	1	0	1	1	0				1	0	0	1	
	wl	hg		3	3	0	0				1							0	0	3	
	wl	5	20	3	3	3	3	3	3		0	1	3				1	0	0	3	
Zinnchloride		hg		3	3	3	3														
SnCl ₂ ; SnCl ₄		alle	<80	3	3	0	0		0		0										
Zitronensäure	wl	alle	SP	3	3	3	0		0		0										
CH ₂ COOH(COH)	wl																				
COOH CH2 COOH																					

1501de/19/10/23/pdf

18

(HYDRA°)

(HYDRA®)

1501de/19/10/23/pdf

WITZENMANN

Im Kapitel 19 finden Sie die Bemaßungen von Flanschen und Rohrbogen sowie von nahtlosen und geschweißten Stahlrohren.

NAHTLOSE UND GESCHWEISSTE STAHLROHRE

DIN EN 10220, Ausgabe 03.2003 (Auszug), Maße und Gewichte

Nenn- weite	Außen- durch- messer				Läng			sen (Gew ke in mn		kg/m			
DN	mm	1,6	1,8	2	2,3	2,6	2,9	3,2	3,6	4	4,5	5	5,6
6	10,2	0,339	0,373	0,404	0,448	0,487							
8	13,5	0,470	0,519	0,567	0,635	0,699	0,758	0,813					
10	17,2	0,616	0,684	0,750	0,845	0,936	1,02	1,10	0,879	1,30	1,41		
15	21,3	0,777	0,866	0,952	1,08	1,20	1,32	1,43	1,21	1,71	1,86	2,01	
20	26,9	0,998	1,11	1,23	1,40	1,56	1,72	1,87	1,57	2,26	2,49	2,70	2,94
25	33,7	1,270	1,42	1,56	1,78	1,99	2,20	2,41	2,07	2,93	3,24	3,54	3,88
32	42,4	1,610	1,80	1,99	2,27	2,55	2,82	3,09	2,67	3,79	4,21	4,61	5,08
40	48,3	1,840	2,06	2,28	2,61	2,93	3,25	3,56	3,44	4,37	4,86	5,34	5,90
50	60,3	2,320	2,60	2,88	3,29	3,70	4,11	4,51	3,97	5,55	6,19	6,82	7,55
65	76,1	2,940	3,30	3,65	4,19	4,71	5,24	5,75	5,03	7,11	7,95	8,77	9,74
80	88,9	3,440	3,87	4,29	4,91	5,53	6,15	6,76	6,44	8,38	9,37	10,3	11,5
100	114,3	4,450	4,99	5,54	6,35	7,16	7,97	8,77	7,57	10,9	12,2	13,5	15,0
125	139,7	5,450	6,12	6,79	7,79	8,79	9,78	10,8	9,83	13,4	15,0	16,6	18,5
150	168,3	6,580	7,39	8,20	9,42	10,6	11,8	13,0	12,1	16,2	18,2	20,1	22,5
200	219,1		9,65	10,7	12,3	13,9	15,5	17,0	14,6	21,2	23,8	26,4	29,5
250	273,0			13,4	15,4	17,3	19,3	21,3	19,1	26,5	29,8	33,0	36,9
300	323,9					20,6	23,0	25,3	23,9	31,6	35,4	39,3	44,0
350	355,6					22,6	25,2	27,8	28,4	34,7	39,0	43,2	48,3
400	406,4					25,9	28,9	31,8	31,3	39,7	44,6	49,5	55,4
450	457							35,8	35,8	44,7	50,2	55,7	62,3
500	508							39,8	40,3	49,5	55,9	62,0	69,4
600	610							47,9	44,8	59,8	67,2	74,6	83,5
700	711								53,8	69,7	78,4	87,1	97,4
800	813									79,8	89,7	99,6	112
900	914									89,8	101	112	125
1000	1016									99,8	112	125	140

Nenn- weite	Außen- durch- messer				Läng		ene Mass Wanddic			kg/m			
DN	mm	6,3	7,1	8	8,8	10	11	12,5	14,2	16	17,5	20	22,2
6	10,2												
8	13,5												
10	17,2												
15	21,3												
20	26,9	3,20	3,47	3,73									
25	33,7	4,26	4,66	5,07	5,40								
32	42,4	5,61	6,18	6,79	7,29	7,99							
40	48,3	6,53	7,21	7,95	8,57	9,45	10,1	11,0					
50	60,3	8,39	9,32	10,3	11,2	12,4	13,4	14,7	16,1	17,5			
65	76,1	10,8	12,1	13,4	14,6	16,3	17,7	19,6	21,7	23,7	25,3	27,7	
80	88,9	12,8	14,3	16,0	17,4	19,5	21,1	23,6	26,2	28,8	30,8	34,0	36,5
100	114,3	16,8	18,8	21,0	22,9	25,7	28,0	31,4	35,1	38,8	41,8	46,5	50,4
125	139,7	20,7	23,2	26,0	28,4	32,0	34,9	39,2	43,9	48,8	52,7	59,0	64,3
150	168,3	25,2	28,2	31,6	34,6	39,0	42,7	48,0	54,0	60,1	65,1	73,1	80,0
200	219,1	33,1	37,1	41,6	45,6	51,6	56,5	63,7	71,8	80,1	87,0	98,2	108
250	273,0	41,4	46,6	52,3	57,3	64,9	71,1	80,3	90,6	101	110	125	137
300	323,9	49,3	55,5	62,3	68,4	77,4	84,9	96,0	108	121	132	150	165
350	355,6	54,3	61,0	68,6	75,3	85,2	93,5	106	120	134	146	166	183
400	406,4	62,2	69,9	78,6	86,3	97,8	107	121	137	154	168	191	210
450	457	70,0	78,8	88,6	97,3	110	121	137	155	174	190	216	238
500	508	77,9	87,7	98,6	108	123	135	153	173	194	212	241	266
600	610	93,8	106	119	130	148	162	184	209	234	256	291	322
700	711	109	123	139	152	173	190	215	244	274	299	341	377
800	813	125	141	159	175	198	218	247	280	314	343	391	433
900	914	141	159	179	196	223	245	278	315	354	387	441	488
1000	1016	157	177	199	219	248	273	309	351	395	431	491	544

19

IJ

608 *WITZENMANN* 1501de/19/10/23/pdf **HYDRA** 1501de/19/10/23/pdf *WITZENMANN* **609**

FLANSCHE

DIN EN 1092: Ausgabe Dezember 2018 (Auszug)

	DIN EN 1092
Außendurchmesser	D
Dichtleistendurchmesser	d ₁
Lochkreisdurchmesser	K
Schraubenlochdurchmesser	L

Nenn- weite			Nenndr	uck 1 und 2	.,5				Nen	indruck 6		
DN				Schra	auben					Schra	auben	
	D	d ₁	K	Anzahl	Gewinde	L	D	d ₁	K	Anzahl	Gewinde	L
10							75	35	50	4	M 10	11
15							80	40	55	4	M 10	11
20							90	50	65	4	M 10	11
25							100	60	75	4	M 10	11
32							120	70	90	4	M 12	14
40							130	80	100	4	M 12	14
50							140	90	110	4	M 12	14
65							160	110	130	4	M 12	14
80							190	128	150	4	M 16	18
100		Ansch	nlussmaß	e siehe Nen	ndruck 6		210	148	170	4	M 16	18
125							240	178	200	8	M 16	18
150							265	202	225	8	M 16	18
200							320	258	280	8	M 16	18
250							375	312	335	12	M 16	18
300							440	365	395	12	M 20	22
350]						490	415	445	12	M 20	22
400							540	465	495	16	M 20	22
450							595	520	550	16	M 20	22
500							645	570	600	20	M 20	22

Nenn- weite			Nenndri	ıck 1 und 2	,5				Ner	indruck 6					
DN				Schra	auben					Schr	auben				
	D	d,	К	Anzahl	Gewinde	L	D	d,	К	Anzahl	Gewinde	L			
600							755	670	705	20	M 24	26			
700							860	775	810	24	M 24	26			
800		Ansch	nlussmaß	e siehe Nen	ndruck 6		975	880	920	24	M 27	30			
900							1075	980	1020	24	M 27	30			
1000							1175	1080	1120	28	M 27	30			
1200	1375	1280	1320	32	M 27	30	1405	1295	1340	32	M 30	33			
1400	1575	1480	1520												
1600	1790	1690	1730	40	M 27	30	1830	1710	1760	40	M 33	36			
1800	1990	1890	1930	44	M 27	30	2045	1920	1970	44	M 36	39			
2000	2190	2090	2130	48	M 27	30	2265	2125	2180	48	M 39	42			
2200	2405	2295	2340	52	M 30	33	2475	2335	2390	52	M 39	42			
2400	2605	2495	2540	56	M 30	33	2685	2545	2600	56	M 39	42			
2600	2805	2695	2740	60	M 30	33	2905	2750	2810	60	M 45	48			
2800	3030	2910	2960	64	M 33	36	3115	2960	3020	64	M 45	48			
3000	3230	3110	3160	68	M 33	36	3315	3160	3220	68	M 45	48			
3200	3430	3310	3360	72	M 33	36	3525	3370	3430	72	M 45	48			
3400	3630	3510	3560	76	M 33	36	3735	3580	3640	76	M 45	48			
3600	3840	3770	3770	80	M 33	36	3970	3790	3860	80	M 52	56			
3800	4045	3970	3970	80	M 36	39			lucias	. []					
4000	4245	4120	4170	84	M 36	39]		Keine	e Flansche					

FLANSCHE PN 10 / PN 16

DIN EN 1092: Ausgabe Dezember 2018 (Auszug)

	DIN EN 1092
Außendurchmesser	D
Dichtleistendurchmesser	d ₁
Lochkreisdurchmesser	K
Schraubenlochdurchmesser	L

Nenn- weite			Neni	ndruck 10					Nen	ndruck 16		
DN				Schra	auben					Schr	auben	
	D	d ₁	K	Anzahl	Gewinde	L	D	d ₁	К	Anzahl	Gewinde	L
6												
8												
10												
15												
20												
25		Ansch	lussmaße	siehe Neni	ndruck 40			Ansch	lussmaße	siehe Nen	ndruck 40	
32												
40												
50												
65												
80												
100							220	158	180	8	M 16	18
125		Ansch	lussmaße	siehe Neni	ndruck 16		250	188	210	8	M 16	18
150							285	212	240	8	M 20	22
200	340	268	295	8	M 20	22	340	268	295	12	M 20	22
250	395	320	350	12	M 20	22	405	320	355	12	M 24	26
300	445	370	400	12	M 20	22	460	378	410	12	M 24	26
350	505	430	460	16	M 20	22	520	438	470	16	M 24	26
400	565	482	515	16	M 24	26	580	490	525	16	M 27	30
450	615	532	565	20	M 24	26	640	550	585	20	M 27	30
500	670	585	620	20	M 24	26	715	610	650	20	M 30	33

Nenn-			Non	ndruck 10					Non	ndruck 16		
weite			NGIII	nuruck 10					NGIII	iuiuck io		
DN				Schr	auben					Schr	auben	
	D	d,	К	Anzahl	Gewinde	L	D	d,	К	Anzahl	Gewinde	L
600	780	685	725	20	M 27	30	840	725	770	20	M 33	36
700	895	800	840	24	M 27	30	910	795	840	24	M 33	36
800	1015	905	950	24	M 30	33	1025	900	950	24	M 36	39
900	1115	1005	1050	28	M 30	33	1125	1000	1050	28	M 36	39
1000	1230	1110	1160	28	M 33	36	1255	1115	1170	28	M 39	42
1200	1455	1330	1380	32	M 36	39	1485	1330	1390	32	M 45	48
1400	1675	1535	1590	36	M 39	42	1685	1530	1590	36	M 45	48
1600	1915	1760	1820	40	M 45	48	1930	1750	1820	40	M 52	56
1800	2115	1960	2020	44	M 45	48	2130	1950	2020	44	M 52	56
2000	2325	2170	2230	48	M 45	48	2345	2150	2230	48	M 56	62
2200	2550	2370	2440	52	M 52	56						
2400	2760	2570	2650	56	M 52	56	1					
2600	2960	2780	2850	60	M 52	56	1					
2800	3180	3000	3070	64	M 52	56						
3000	3405	3210	3290	68	M 56	62						
3200									keine	Flansche		
3400												
3600			keine	Flansche								
3800	1											
4000	1											

nach Absprache sind 4 Schrauben zulässig

DIN EN 1092: Ausgabe Dezember 2018 (Auszug)

	DIN EN 1092
Außendurchmesser	D
Dichtleistendurchmesser	d ₁
Lochkreisdurchmesser	K
Schraubenlochdurchmesser	L

Nenn- weite			Nen	ndruck 25			Nenndruck 40					
DN				Schra	auben					Schr	auben	
	D	d ₁	K	Anzahl	Gewinde	L	D	d ₁	К	Anzahl	Gewinde	L
10							90	40	60	4	M 12	14
15							95	45	65	4	M 12	14
20							105	58	75	4	M 12	14
25							115	68	85	4	M 12	14
32							140	78	100	4	M 16	18
40		A	l	siehe Neni			150	88	110	4	M 16	18
50		Anscn	iussinaise	siene iveni	TOTUCK 40		165	102	125	4	M 16	18
65							185	122	145	8	M 16	18
80							200	138	160	8	M 16	18
100							235	162	190	8	M 20	22
125							270	188	220	8	M 24	26
150							300	218	250	8	M 24	26
200	360	278	310	12	M 24	26	375	285	320	12	M 27	30
250	425	335	370	12	M 27	30	450	345	385	12	M 30	33
300	485	395	430	16	M 27	30	515	410	450	16	M 30	33
350	555	450	490	16	M 30	33	580	465	510	16	M 33	36
400	620	505	550	16	M 33	36	660	535	585	16	M 36	39
450	670	555	600	20	M 33	36	685	560	610	20	M 36	39
500	730	615	660	20	M 33	36	755	615	670	20	M 39	42

Nenn- weite			Nen	ndruck 25					Neni	ndruck 40		
DN				Schr	auben					Schr	auben	
	D	d,	К	Anzahl	Gewinde	L	D	d,	К	Anzahl	Gewinde	L
600	845	720	770	20	M 36	39	890	735	795	20	M 45	48
700	960	820	875	24	M 39	42	995	840	900	24	M 45	48
800	1085	930	990	24	M 45	48	1140	960	1030	24	M 52	56
900	1185	1030	1090	28	M 45	48	1250	1070	1140	28	M 52	56
1000	1320	1140	1210	28	M 52	56	1360	1180	1250	28	M 52	56
1200	1530	1350	1420	32	M 52	56	1575	1380	1460	32	M 56	62
1400	1755	1560	1640	36	M 56	62	1795	1600	1680	36	M 56	62
1600	1975	1780	1860	40	M 56	62	2025	1815	1900	40	M 64	70
1800	2195	1985	2070	44	M 64	70						
2000	2425	2210	2300	48	M 64	70	1					
2200							1					
2400	1											
2600	1											
2800	1											
3000	1			F					keine	e Flansche		
3200	1		keine	Flansche								
3400	1											
3600	1											
3800	1											
4000	1											

(HYDRA°)

FLANSCHE PN 63 / PN 100

DIN EN 1092: Dezember 2018 (Auszug)

	DIN EN 1092
Außendurchmesser	D
Dichtleistendurchmesser	d ₁
Lochkreisdurchmesser	K
Schraubenlochdurchmesser	L

Nenn- weite			Nen	ndruck 63			Nenndruck 100					
DN				Schra	auben					Schra	auben	
	D	d ₁	K	Anzahl	Gewinde	L	D	d,	K	Anzahl	Gewinde	L
10							100	40	70	4	M 12	14
15							105	45	75	4	M 12	14
20		A b.l.		siehe Nenn	100 بامنسان		130	58	90	4	M 16	18
25		Anschi	ussmaise	siene ivenn	aruck 100		140	68	100	4	M 16	18
32							155	78	110	4	M 20	22
40							170	88	125	4	M 20	22
50	180	102	135	4	M 20	22	195	102	145	4	M 24	26
65	205	122	160	8	M 20	22	220	122	170	8	M 24	26
80	215	138	170	8	M 20	22	230	138	180	8	M 24	26
100	250	162	200	8	M 24	26	265	162	210	8	M 27	30
125	295	188	240	8	M 27	30	315	188	250	8	M 30	33
150	345	218	280	8	M 30	33	355	218	290	12	M 30	33
200	415	285	345	12	M 33	36	430	285	360	12	M 33	36
250	470	345	400	12	M 33	36	505	345	430	12	M 36	39
300	530	410	460	16	M 33	36	585	410	500	16	M 39	42
350	600	465	525	16	M 36	39	655	465	560	16	M 45	48
400	670	535	585	16	M 39	42	715	535	620	16	M 45	48
500	800	615	705	20	M 45	48	870	615	760	20	M 52	56
600	930	735	820	20	M 52	56	-	-	-	-	-	-

Nenn- weite			Neni	ndruck 63					Nenn	druck 100			
DN				Schra	auben					Schra	auben		
	D	d ₁	K	Anzahl	Gewinde	L	D	d ₁	K	Anzahl	Gewinde	L	
700	1045	840	935	24	M 52	56							
800	1165	960	1050	24	M 56	62							
900	1285	1070	1170	28	M 56	62			keine	Flansche			
1000	1415	1180	1290	28	M 64	70	70						
1200	1665	1380	1530	32	M 72	78	'8						

FLANSCHE NACH US-NORM

ASME B16.5-2020 / B16.47-2020 (Serie A) Class 150

D Außendurchmesser K Lochkreisdurchmesser I Schraubenlochdurchmesser

Nenn	weite		Fla	nsch				Schrauben		
		Außendur	chmesser	Lochkreisd	urchmesser	Anzahl	Lochdure	chmesser	Gew	rinde
D	N)	1	(-		L	-	-
-	Zoll	mm	Zoll	mm	Zoll	-	mm	Zoll	mm	Zoll
15	1/2	89	3,50	60,5	2,38	4	15,9	5/8	12,7	1/2
20	3/4	99	3,88	69,8	2,75	4	15,9	5/8	12,7	1/2
25	1	108	4,25	79,2	3,12	4	15,9	5/8	12,7	1/2
32	1 1/4	117	4,62	88,9	3,50	4	15,9	5/8	12,7	1/2
40	1 1/2	127	5,00	98,6	3,88	4	15,9	5/8	12,7	1/2
50	2	152	6,00	120,6	4,75	4	19,0	3/4	15,9	5/8
65	2 1/2	178	7,00	139,7	5,50	4	19,0	3/4	15,9	5/8
80	3	190	7,50	152,4	6,00	4	19,0	3/4	15,9	5/8
100	4	229	9,00	190,5	7,50	8	19,0	3/4	15,9	5/8
125	5	254	10,00	215,9	8,50	8	22,2	7/8	19,0	3/4
150	6	279	11,00	241,3	9,50	8	22,2	7/8	19,0	3/4
200	8	343	13,50	298,4	11,75	8	22,2	7/8	19,0	3/4
250	10	406	16,00	362,0	14,25	12	25,4	1	22,2	7/8
300	12	483	19,00	431,8	17,00	12	25,4	1	22,2	7/8
350	14	533	21,00	476,2	18,75	12	28,6	1 ¹ / ₈	22,2	1
400	16	597	23,50	539,8	21,25	16	28,6	1 ¹ / ₈	25,4	1
450	18	635	25,00	577,8	22,75	16	31,7	1 1/4	28,6	1 ¹ /8
500	20	693	27,50	635,0	25,00	20	31,7	1 1/4	28,6	1 ¹/s
600	24	813	32,00	749,3	29,50	20	34,9	1 ³ / ₈	31,7	1 1/4
700	28	927	36,50	863,6	34,00	28	34,9	1 ³ / ₈	31,7	1 1/4
800	32	1060	41,75	977,9	38,50	28	34,9	1 ³ / ₈	31,7	1 1/4
900	36	1168	46,00	1085,8	42,75	32	41,3	1 ⁵ /8	38,1	1 1/2
1000	40	1289	50,75	1200,2	47,25	36	41,3	1 ⁵ /8	38,1	1 1/2

FLANSCHE NACH US-NORM

ASME B16.5-2020 / B16.47-2020 (Serie A) Class 300

D Außendurchmesser K Lochkreisdurchmesser I Schraubenlochdurchmesser

Nenn	weite		Fla	nsch				Schrauben		
		Außendu	chmesser	Lochkreisd	urchmesser	Anzahl	Lochdure	chmesser	Gew	rinde
D	N)	ı	(-		L	-	-
-	Zoll	mm	Zoll	mm	Zoll	-	mm	Zoll	mm	Zoll
15	1/2	95	3,75	66,5	2,62	4	15,9	5/8	12,7	1/2
20	3/4	117	4,62	82,6	3,25	4	19,0	3/4	15,9	5/8
25	1	124	4,88	88,9	3,50	4	19,0	3/4	15,9	5/8
32	1 1/4	133	5,25	98,6	3,88	4	19,0	3/4	15,9	5/8
40	1 1/2	155	6,12	114,3	4,50	4	22,2	7/8	19,0	3/4
50	2	165	6,50	127,0	5,00	8	19,0	3/4	15,9	5/8
65	2 1/2	190	7,50	149,4	5,88	8	22,2	7/8	19,0	3/4
80	3	210	8,25	168,1	6,62	8	22,2	7/8	19,0	3/4
100	4	254	10,00	200,2	7,88	8	22,2	7/8	19,0	3/4
125	5	279	11,00	235,0	9,25	8	22,2	7/8	19,0	3/4
150	6	318	12,50	269,7	10,62	12	22,2	7/8	19,0	3/4
200	8	381	15,00	330,2	13,00	12	25,4	1	22,2	7/8
250	10	444	17,50	387,4	15,25	16	28,6	1 ¹ /8	25,4	1
300	12	521	20,50	450,8	17,75	16	31,7	1 1/4	28,6	1 1/8
350	14	584	23,00	514,4	20,25	20	31,7	1 1/4	28,6	1 1/8
400	16	648	25,50	571,5	22,50	20	34,9	1 ³ / ₈	31,7	1 1/4
450	18	711	28,00	628,6	24,75	24	34,9	1 ³ / ₈	31,7	1 1/4
500	20	775	30,50	685,8	27,00	24	34,9	1 ³ / ₈	31,7	1 1/4
600	24	914	36,00	812,8	32,00	24	41,3	1 ⁵ /8	38,1	1 1/2
700	28	1035	40,75	939,8	37,00	28	44,4	1 3/4	41,3	1 ⁵ /8
800	32	1149	45,25	1054,1	41,50	28	47,6	1 ⁷ /8	44,4	1 3/4
900	36	1270	50,00	1168,4	46,00	32	54,0	2 1/8	50,8	2
1000	40	1238	48,75	1155,7	45,50	36	54,0	2 1/8	50,8	2

(HYDRA®)

FLANSCHE NACH US-NORM

ASME B16.5-2020 / B16.47-2020 (Serie A) Class 400

D Außendurchmesser K Lochkreisdurchmesser I Schraubenlochdurchmesser

Nenn	weite		Flai	ısch	<u> </u>			Schrauben			
		Außendur	chmesser	Lochkreisd	urchmesser	Anzahl	Lochdure	chmesser	Gew	rinde	
D	N)	ı	K	-	-	L	-		
-	Zoll	mm	Zoll	mm	Zoll	-	mm	Zoll	mm	Zoll	
15	1/2										
20	3/4										
25	1										
32	1 ¹ / ₄				Anschlussma	aße siehe C	ass 600				
40	1 1/2				7111001111111001111	3,00 0,0110 0					
50	2										
65	2 1/2										
80	3										
100	4	254	10,00	200,2	7,88	8	25,4	1	22,2	7/8	
125	5	279	11,00	235,0	9,25	8	25,4	1	22,2	7/8	
150	6	318	12,50	269,7	10,62	12	25,4	1	22,2	7/8	
200	8	381	15,00	330,2	13,00	12	28,6	1 ¹ /8	25,4	1	
250	10	444	17,50	387,4	15,25	16	31,7	1 ¹ / ₄	28,6	1 1/8	
300	12	521	20,50	450,8	17,75	16	34,9	1 ³ / ₈	31,7	1 1/4	
350	14	584	23,00	514,4	20,25	20	34,9	1 ³ / ₈	31,7	1 1/4	
400	16	648	25,50	571,5	22,50	20	38,1	1 1/2	34,9	1 ³ / ₈	
450	18	711	28,00	628,6	24,75	24	38,1	1 1/2	34,9	1 ³/s	
500	20	775	30,50	685,8	27,00	24	41,3	1 ⁵ /8	38,1	1 1/2	
600	24	914	36,00	812,8	32,00	24	47,6	1 ⁷ /8	44,4	1 3/4	
700	28	1035	40,75	939,8	37,00	28	47,6	1 ⁷ /8	44,4	1 3/4	
800	32	1149	45,25	1054,1	43,50	28	54,0	2 1/8	50,8	2	
900	36	1270	50,00	1168,4	46,00	32	54,0	2 1/8	50,8	2	
1000	40	1270	50.00	1174.8	46.25	36	66,7	2 5/8	63,5	2 1/2	

FLANSCHE NACH US-NORM

ASME B16.5-2020 / B16.47-2020 (Serie A) Class 600

D Außendurchmesser K Lochkreisdurchmesser I Schraubenlochdurchmesser

Nenn	weite		Fla	nsch				Schrauben		
		Außendu	chmesser	Lochkreisd	urchmesser	Anzahl	Lochdure	chmesser	Gew	rinde
D	N	- 1)	ı	(-		L	-	-
-	Zoll	mm	Zoll	mm	Zoll	-	mm	Zoll	mm	Zoll
15	1/2	95	3,75	66,5	2,62	4	15,9	5/8	12,7	1/2
20	3/4	117	4,62	82,6	3,25	4	19,0	3/4	15,9	5/8
25	1	124	4,88	88,9	3,50	4	19,0	3/4	15,9	5/8
32	1 1/4	133	5,25	98,6	3,88	4	19,0	3/4	15,9	5/8
40	1 1/2	155	6,12	114,3	4,50	4	22,2	7/8	19,0	3/4
50	2	165	6,50	127,0	5,00	8	19,0	3/4	15,9	5/8
65	2 1/2	190	7,50	149,4	5,88	8	22,2	7/8	19,0	3/4
80	3	210	8,25	168,1	6,62	8	22,2	7/8	19,0	3/4
100	4	273	10,75	215,9	8,50	8	25,4	1	22,2	7/8
125	5	330	13,00	266,7	10,50	8	28,6	1 ¹ /8	25,4	1
150	6	356	14,00	292,1	11,50	12	28,6	1 ¹ /8	25,4	1
200	8	419	16,50	349,2	13,75	12	31,7	1 1/4	28,6	1 ¹ / ₈
250	10	508	20,00	431,8	17,00	16	34,9	1 ³ / ₈	31,7	1 ¹ / ₄
300	12	559	22,00	489,0	19,25	20	34,9	1 ³ / ₈	31,7	1 1/4
350	14	603	23,75	527,0	20,75	20	38,1	1 1/2	34,9	1 ³ / ₈
400	16	686	27,00	603,2	23,75	20	41,3	1 ⁵ /8	38,1	1 1/2
450	18	743	29,25	654,0	25,75	20	44,4	1 3/4	41,3	1 ⁵ /8
500	20	813	32,00	723,9	28,50	24	44,4	1 3/4	41,3	1 ⁵ /8
600	24	940	37,00	838,2	33,00	24	50,8	2	47,6	1 7/8
700	28	1073	42,25	965,2	38,00	28	50,8	2	47,6	1 7/8
800	32	1194	47,00	1079,5	42,50	28	54,0	2 1/8	50,8	2
900	36	1314	51,75	1193,8	47,00	28	66,7	2 5/8	63,5	2 1/2
1000	40	1321	52,00	1212,8	47,75	28	73,0	2 7/8	69,8	2 3/4

621

FLANSCHE NACH US-NORM

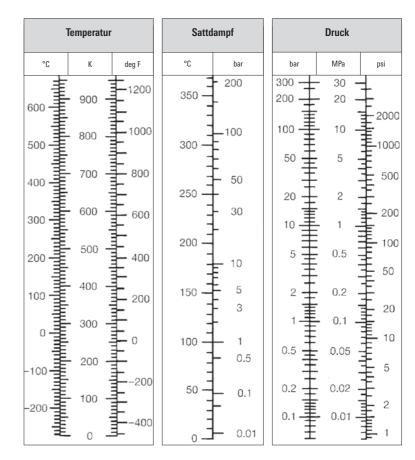
ASME B16.5-2020 / B16.47-2020 (Serie A) Class 900

D Außendurchmesser K Lochkreisdurchmesser I Schraubenlochdurchmesser

Nenn	weite		Fla	nsch				Schrauben		
		Außendu	chmesser	Lochkreisd	urchmesser	Anzahl	Lochdure	chmesser	Gew	inde
D	N	1)		<	-		L	-	-
-	Zoll	mm	Zoll	mm	Zoll	-	mm	Zoll	mm	Zoll
15	1/2	121	4,75	82,6	3,25	4	22,2	7/8	19,0	3/4
20	3/4	130	5,12	88,9	3,50	4	22,2	7/8	19,0	3/4
25	1	149	5,88	101,6	4,00	4	25,4	1	22,2	7/8
32	1 1/4	159	6,25	111,1	4,38	4	25,4	1	22,2	7/8
40	1 1/2	178	7,00	124,0	4,88	4	28,6	1 1/8	25,4	1
50	2	216	8,50	165,1	6,50	8	25,4	1	22,2	7/8
65	2 1/2	244	9,62	190,5	7,50	8	28,6	1 1/8	25,4	1
80	3	241	9,50	190,5	7,50	8	25,4	1	22,2	7/8
100	4	292	11,50	235,0	9,25	8	31,7	1 1/4	28,6	1 ¹ /8
125	5	349	13,75	279,4	11,00	8	34,9	1 ³ / ₈	31,7	1 ¹ / ₄
150	6	381	15,00	317,5	12,50	12	31,7	1 ¹ / ₄	28,6	1 ¹ /8
200	8	470	18,50	393,7	15,50	12	38,1	1 ¹ / ₂	34,9	1 ³ / ₈
250	10	546	21,50	469,9	18,50	16	38,1	1 ¹ / ₂	34,9	1 ³ / ₈
300	12	610	24,00	533,4	21,00	20	38,1	1 1/2	34,9	1 ³ / ₈
350	14	641	25,25	558,8	22,00	20	41,3	1 ⁵ /8	38,1	1 1/2
400	16	705	27,75	616,0	24,25	20	44,4	1 3/4	41,3	1 ⁵ /8
450	18	787	31,00	685,8	27,00	20	50,8	2	47,6	1 7/8
500	20	857	33,75	749,3	29,50	20	54,0	2 1/8	50,8	2
600	24	1041	41,00	901,7	35,50	20	66,7	2 5/8	63,5	2 1/2
700	28	1168	46,00	1022,4	40,25	28	47,6	1 7/8	44,4	1 ³ / ₄
800	32	1314	51,75	1155,7	45,50	28	54,0	2 1/8	50,8	2
900	36	1460	57,50	1289,0	50,75	32	54,0	2 1/8	50,8	2
1000	40	1511	59,50	1339,8	52,75	36	66,7	2 5/8	63,5	2 1/2

ROHRBOGEN, 90°

DIN EN 10253-2, Ausgabe 09.2008



Nennweite	Außendurchmesser	Bauart 2: R ~ 1,0 x D		Bauart 3: R ~ 1,5 x D	
DN	D	R	W	R	W
-	mm	mm	mm	mm	mm
50	60,3	51	81	76	106
65	76,1	63	102	95	133
80	88,9	76	121	114	159
100	114,3	102	159	152	210
125	139,7	127	197	190	260
150	168,3	152	237	229	313
200	219,1	203	313	305	414
250	273	254	391	381	518
300	323,9	305	467	457	619
350	355,6	356	533	533	711
400	406,4	406	610	610	813
450	457	457	686	686	914
500	508	508	762	762	1016
600	610	610	914	914	1219
700	711	711	1066	1067	1422
800	813	813	1220	1219	1626
900	914	914	1371	1372	1829
1000	1016	1016	1524	1524	2032

10

UMRECHNUNGSTABELLEN UND FORMELZEICHEN 16.95€

TEMPERATUREN, SATTDAMPF, DRUCK

WASSERDAMPFTAFEL

Druck (absolut)	Sättigungstemperatur	kinematische Viskosität des Dampfes	Dichte des Dampfes
bar	°C	10 ⁻⁶ m ² /s	kg/m³
P	t	ν ⁿ	ρ^{n}
0,02	17,513	650,24	0,01492
0,04	28,983	345,295	0,02873
0,06	36,183	240,676	0,04212
0,08	41,534	186,72	0,05523
0,1	45,833	153,456	0,06814
0,14	52,574	114,244	0,09351
0,2	60,086	83,612	0,1307
0,25	64,992	68,802	0,1612
0,3	69,124	58,69	0,1912
0,4	75,886	45,699	0,2504
0,45	78,743	41,262	0,2796
0,5	81,345	37,665	0,3086
0,6	85,954	32,177	0,3661
0,7	89,959	28,178	0,4229
0,8	93,512	25,126	0,4792
0,9	96,713	22,716	0,535
1	99,632	20,76	0,5904
1,5	111,37	14,683	0,8628
2	120,23	11,483	1,129
2,5	127,43	9,494	1,392
3	133,54	8,13	1,651
3,5	138,87	7,132	1,908
4	143,62	6,367	2,163
4,5	147,92	5,76	2,417

Druck (absolut)	Sättigungstemperatur	kinematische Viskosität des Dampfes	Dichte des Dampfes
bar	°C	10 ⁻⁶ m ² /s	kg/m³
P	t	√n	ρ^{n}
5	151,84	5,268	2,669
6	158,84	4,511	3,17
7	164,96	3,956	3,667
8	170,41	3,531	4,162
9	175,36	3,193	4,655
10	179,88	2,918	5,147
11	184,07	2,689	5,637
12	187,96	2,496	6,127
13	191,61	2,33	6,617
14	195,04	2,187	7,106
15	198,29	2,061	7,596
20	212,37	1,609	10,03
25	223,94	1,323	12,51
30	233,84	1,126	15,01
34	240,88	1,008	17,03
38	247,31	0,913	19,07
40	250,33	0,872	20,1
45	257,41	0,784	22,68
50	263,91	0,712	25,33
55	269,93	0,652	28,03
60	275,55	0,601	30,79
65	280,82	0,558	33,62
70	285,79	0,519	36,51
75	290,5	0,486	39,48

PHYSIKALISCHE EINHEITEN (D, GB, US)

DIN 1301-1, Ausgabe 10.2010 u.a.

SI-Basiseinheiten

Größe	SI-Basiseinheit		
	Name	Zeichen	
Länge	Meter	m	
Masse	Kilogramm	kg	
Zeit	Sekunde	s	
elektrische Stromstärke	Ampere	A	
thermodynamische Temperatur	Kelvin	К	
Stoffmenge	Mol	mol	
Lichtstärke	Candela	cd	

Vorsatzzeichen

Vorsatz	Vorsatzzeichen	Faktor mit dem die Einheit multipiziert wird
Piko	p	10 ⁻¹²
Nano	n	10 ⁻⁹
Mikro	μ	10-6
Milli	m	10-3
Zenti	С	10-2
Dezi	d	10-1
Deka	da	101
Hekto	h	10 ²
Kilo	k	10 ³
Mega	M	10 ⁶
Giga	G	10 ⁹

Länge - SI-Einheit Meter, m

Zeichen	Name	in m
mm	Millimeter	0,0010
km	Kilometer	1000
in	inch	0,0254
ft	foot (=12 in)	0,3048
yd	yard (=3 ft / =36 in)	0,9144

1501de/19/10/23/pdf

Masse - SI-Einheit Kilogramm, kg

Zeichen	Name	in kg
g	Gramm	0,00100
t	Tonne	1000
OZ	ounce	0,02835
lb	pound	0,45360
sh tn	short ton (US)	907,2
tn	ton (UK)	1016

Zeit - SI-Einheit Sekunde, s

Zeichen	Name	in s
min	Minute	60
h	Stunde	3600
d	Tag	86400
а	Jahr	3,154 · 10 ⁷ (△ 8760 h)

Temperatur - SI-Einheit Kelvin, K

Zeichen	Name	in K	in °C
°C	Grad Celsius	ϑ/°C + 273,16	1
deg F	degree Fahrenheit	∂/deg F · 5/9 + 255,38	(∂/deg F - 32) · 5/9

Winkel - SI-Einheit Radiant, rad = m/m

Zeichen	Name	in rad
	Vollwinkel	2π
gon	Gon (Neugrad)	π/200
0	Grad (grd)	π/180
1	Minute	π/1,08 · 10 ⁻⁴
п	Sekunde	π/6,48 · 10-5

(HYDRA®)

20

Druck - SI-Einheit Pascal, Pa = N/m² = kg/ms²

Zeichen	Name	in Pa	in bar
$Pa = N/m^2$	Pascal	1	0,00001
hPa = mbar	Hektopascal = Millibar	100	0,001
kPA	Kilopascal	1000	0,01
bar	Bar	100000	1
MPa = N/mm ²	Megapascal	1000000	10
mm WS	Millimeter Wassersäule	9,807	0,0001
lbf/in² = psi	pound-force per square inch	6895	0,0689
lbf/ft²	pound-force per square foot	47,88	0,00048

Energie (auch Arbeit, Wärmemenge) - SI-Einheit Joule, J = Nm = Ws

Zeichen	Name	in J
kWs	Kilowattsekunde	1000
kWh	Kilowattstunde	3,6 · 10 ⁶
kcal	Kilokalorie	4186
lbf x ft	pound-force foot	1,356
Btu	British thermal unit	1055

Leistung – SI-Einheit Watt, W = m² kg/s³ = J/s

Zeichen	Name	in W
kW	Kilowatt	1000
PS	Pferdestärken	735,5
hp	horsepower	745,7

Volumen - SI-Einheit, m³

Zeichen	Name	in m³
1	Liter	0,001
in ³	cubic inch	1,6387 · 10 ⁻⁵
ft³	cubic foot	0,02832
gal	gallon (UK)	0,004546
gal	gallon (US)	0,003785

GRIECHISCHES ALPHABET

α	Alpha	A	Alpha
β	Beta	В	Beta
γ	Gamma	Γ	Gamma
δ	Delta	Δ	Delta
ε	Epsilon	E	Epsilon
ζ	Zeta	Z	Zeta
η	Eta	Н	Eta
θθ	Theta	Θ	Theta
ι	Jota	I	Jota
ж	Карра	K	Карра
λ	Lambda	Λ	Lambda
μ	Му	M	My
ν	Ny	N	Ny
3	Xi	Ξ	Xi
o	Omikron	O	Omikror
π	Pi	П	Pi
ρ	Rho	P	Rho
σς	Sigma	Σ	Sigma
τ	Tau	T	Tau
υ	Ypsilon	Y	Ypsilon
φ	Phi	Φ	Phi
χ	Chi	X	Chi
ψ	Psi	Ψ	Psi
ω	Omega	Ω	Omega

(HYDRA®)

UNTERLAGEN ZU WEITEREN PRODUKTEN

Das Handbuch der Metallschläuche

Das Handbuch der Metallbälge

Weitere Produktinformationen unter www.witzenmann.de

632 *WITZENMANN* 1501de/19/10/23/pdf **HYDRA** 1501de/19/10/23/pdf *WITZENMANN* **633**

WITZENMANN 635

634 WITZENMANN

NOTIZEN

